runmean {caTools} | R Documentation |
Moving (aka running, rolling) Window Mean calculated over a vector
runmean(x, k, alg=c("C", "R", "fast", "exact"), endrule=c("mean", "NA", "trim", "keep", "constant", "func"), align = c("center", "left", "right"))
x |
numeric vector of length n or matrix with n rows. If x is a
matrix than each column will be processed separately. |
k |
width of moving window; must be an integer between 1 and n |
alg |
an option to choose different algorithms
|
endrule |
character string indicating how the values at the beginning
and the end, of the data, should be treated. Only first and last k2
values at both ends are affected, where k2 is the half-bandwidth
k2 = k %/% 2 .
endrule in runmed function which has the
following options: “c("median", "keep", "constant") ” .
|
align |
specifies whether result should be centered (default),
left-aligned or right-aligned. If endrule ="mean" then setting
align to "left" or "right" will fall back on slower implementation
equivalent to endrule ="func". |
Apart from the end values, the result of y = runmean(x, k) is the same as
“for(j=(1+k2):(n-k2)) y[j]=mean(x[(j-k2):(j+k2)])
”.
The main incentive to write this set of functions was relative slowness of
majority of moving window functions available in R and its packages. With the
exception of runmed
, a running window median function, all
functions listed in "see also" section are slower than very inefficient
“apply(embed(x,k),1,FUN)
” approach. Relative
speed of runmean
function is O(n).
Function EndRule
applies one of the five methods (see endrule
argument) to process end-points of the input array x
. In current
version of the code the default endrule="mean"
option is calculated
within C code. That is done to improve speed in case of large moving windows.
In case of runmean(..., alg="exact")
function a special algorithm is
used (see references section) to ensure that round-off errors do not
accumulate. As a result runmean
is more accurate than
filter
(x, rep(1/k,k)) and runmean(..., alg="C")
functions.
Returns a numeric vector or matrix of the same size as x
. Only in case of
endrule="trim"
the output vectors will be shorter and output matrices
will have fewer rows.
Function runmean(..., alg="exact")
is based by code by Vadim Ogranovich,
which is based on Python code (see last reference), pointed out by Gabor
Grothendieck.
Jarek Tuszynski (SAIC) jaroslaw.w.tuszynski@saic.com
runmean
:
Shewchuk, Jonathan Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates,
http://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps
Links related to:
mean
, kernapply
,
filter
, decompose
,
stl
,
rollmean
from zoo library,
subsums
from magic library,
runmin
,
runmax
, runquantile
, runmad
and
runsd
runmed
apply
(embed(x,k), 1, FUN)
(fastest), running
from gtools
package (extremely slow for this purpose), subsums
from
magic library can perform running window operations on data with any
dimensions.
# show runmean for different window sizes n=200; x = rnorm(n,sd=30) + abs(seq(n)-n/4) x[seq(1,n,10)] = NaN; # add NANs col = c("black", "red", "green", "blue", "magenta", "cyan") plot(x, col=col[1], main = "Moving Window Means") lines(runmean(x, 3), col=col[2]) lines(runmean(x, 8), col=col[3]) lines(runmean(x,15), col=col[4]) lines(runmean(x,24), col=col[5]) lines(runmean(x,50), col=col[6]) lab = c("data", "k=3", "k=8", "k=15", "k=24", "k=50") legend(0,0.9*n, lab, col=col, lty=1 ) # basic tests against 2 standard R approaches k=25; n=200; x = rnorm(n,sd=30) + abs(seq(n)-n/4) # create random data a = runmean(x,k, endrule="trim") # tested function b = apply(embed(x,k), 1, mean) # approach #1 c = cumsum(c( sum(x[1:k]), diff(x,k) ))/k # approach #2 eps = .Machine$double.eps ^ 0.5 stopifnot(all(abs(a-b)<eps)); stopifnot(all(abs(a-c)<eps)); # test against loop approach # this test works fine at the R prompt but fails during package check - need to investigate k=25; data(iris) x = iris[,1] n = length(x) x[seq(1,n,11)] = NaN; # add NANs k2 = k k1 = k-k2-1 a = runmean(x, k) b = array(0,n) for(j in 1:n) { lo = max(1, j-k1) hi = min(n, j+k2) b[j] = mean(x[lo:hi], na.rm = TRUE) } #stopifnot(all(abs(a-b)<eps)); # commented out for time beeing - on to do list # compare calculation at array ends a = runmean(x, k, endrule="mean") # fast C code b = runmean(x, k, endrule="func") # slow R code stopifnot(all(abs(a-b)<eps)); # Testing of different methods to each other for non-finite data # Only alg "C" and "exact" can handle not finite numbers eps = .Machine$double.eps ^ 0.5 n=200; k=51; x = rnorm(n,sd=30) + abs(seq(n)-n/4) # nice behaving data x[seq(1,n,10)] = NaN; # add NANs x[seq(1,n, 9)] = Inf; # add infinities b = runmean( x, k, alg="C") c = runmean( x, k, alg="exact") stopifnot(all(abs(b-c)<eps)); # Test if moving windows forward and backward gives the same results # Test also performed on data with non-finite numbers a = runmean(x , alg="C", k) b = runmean(x[n:1], alg="C", k) stopifnot(all(abs(a[n:1]-b)<eps)); a = runmean(x , alg="exact", k) b = runmean(x[n:1], alg="exact", k) stopifnot(all(abs(a[n:1]-b)<eps)); # test vector vs. matrix inputs, especially for the edge handling nRow=200; k=25; nCol=10 x = rnorm(nRow,sd=30) + abs(seq(nRow)-n/4) x[seq(1,nRow,10)] = NaN; # add NANs X = matrix(rep(x, nCol ), nRow, nCol) # replicate x in columns of X a = runmean(x, k) b = runmean(X, k) stopifnot(all(abs(a-b[,1])<eps)); # vector vs. 2D array stopifnot(all(abs(b[,1]-b[,nCol])<eps)); # compare rows within 2D array # Exhaustive testing of different methods to each other for different windows numeric.test = function (x, k) { a = runmean( x, k, alg="fast") b = runmean( x, k, alg="C") c = runmean( x, k, alg="exact") d = runmean( x, k, alg="R", endrule="func") eps = .Machine$double.eps ^ 0.5 stopifnot(all(abs(a-b)<eps)); stopifnot(all(abs(b-c)<eps)); stopifnot(all(abs(c-d)<eps)); } n=200; x = rnorm(n,sd=30) + abs(seq(n)-n/4) # nice behaving data for(i in 1:5) numeric.test(x, i) # test small window sizes for(i in 1:5) numeric.test(x, n-i+1) # test large window size # speed comparison ## Not run: x=runif(1e7); k=1e4; system.time(runmean(x,k,alg="fast")) system.time(runmean(x,k,alg="C")) system.time(runmean(x,k,alg="exact")) system.time(runmean(x,k,alg="R")) # R version of the function x=runif(1e5); k=1e2; # reduce vector and window sizes system.time(runmean(x,k,alg="R")) # R version of the function system.time(apply(embed(x,k), 1, mean)) # standard R approach system.time(filter(x, rep(1/k,k), sides=2)) # the fastest alternative I know ## End(Not run) # show different runmean algorithms with data spanning many orders of magnitude n=30; k=5; x = rep(100/3,n) d=1e10 x[5] = d; x[13] = d; x[14] = d*d; x[15] = d*d*d; x[16] = d*d*d*d; x[17] = d*d*d*d*d; a = runmean(x, k, alg="fast" ) b = runmean(x, k, alg="C" ) c = runmean(x, k, alg="exact") y = t(rbind(x,a,b,c)) y