.
i1 : R = ZZ/32003[x_1..x_3];
|
i2 : g = random(R^1, R^{-4})
o2 = | 862x_1^4-11719x_1^3x_2-2486x_1^2x_2^2-1686x_1x_2^3-576x_2^4+1851x_1^3x
------------------------------------------------------------------------
_3-3138x_1^2x_2x_3+8983x_1x_2^2x_3+5501x_2^3x_3-2514x_1^2x_3^2-3278x_1x_
------------------------------------------------------------------------
2x_3^2-469x_2^2x_3^2-8578x_1x_3^3-6455x_2x_3^3+633x_3^4 |
1 1
o2 : Matrix R <--- R
|
i3 : f = fromDual g
o3 = | x_2^2x_3-5382x_1x_3^2-9909x_2x_3^2-3145x_3^3
------------------------------------------------------------------------
x_1x_2x_3-6487x_1x_3^2-10956x_2x_3^2-15596x_3^3
------------------------------------------------------------------------
x_1^2x_3-14776x_1x_3^2+14679x_2x_3^2-5849x_3^3
------------------------------------------------------------------------
x_2^3+3484x_1x_3^2-5670x_2x_3^2-9756x_3^3
------------------------------------------------------------------------
x_1x_2^2-12969x_1x_3^2+9165x_2x_3^2-3634x_3^3
------------------------------------------------------------------------
x_1^2x_2+15619x_1x_3^2-1577x_2x_3^2+12361x_3^3
------------------------------------------------------------------------
x_1^3-4738x_1x_3^2+230x_2x_3^2+4569x_3^3 |
1 7
o3 : Matrix R <--- R
|
i4 : res ideal f
1 7 7 1
o4 = R <-- R <-- R <-- R <-- 0
0 1 2 3 4
o4 : ChainComplex
|
i5 : betti oo
0 1 2 3
o5 = total: 1 7 7 1
0: 1 . . .
1: . . . .
2: . 7 7 .
3: . . . .
4: . . . 1
o5 : BettiTally
|