next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2           2            2         2 2    2     2 2     
o2 = ideal (g*h  - t*v, i*r x - a, i*k*o  - n, t*v x  - f , a*r u  - g,
     ------------------------------------------------------------------------
        2 2    2   2   2    2
     l*r t  - f , a h*s  - k )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 3 3 3    3     2   3   2 3 3 3 3    3 3 2   3   4 4 2     3  
o3 = ideal (c g i t  - h l*m*s v*w , c d l m t  - i n o p*r , a e g p*t*x  -
     ------------------------------------------------------------------------
      3 3 4 3   3 3   2 4 4    2 3 4 3
     d h k o , c g i*l v x  - d h p u )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.