Free Pascal
Reference guide

Reference guide for Free Pascal, version 3.0.0
Document version 2.6
February 2016

Michaél Van Canneyt

Contents

1 Pascal Tokens

1.1 Symbols
1.2 Comments o e e e e e e e
1.3 Reservedwords
1.3.1 Turbo Pascalreserved words
1.3.2 FreePascalreservedwords
1.3.3 Object Pascal reserved words
1.34 Modifiers e
1.4 Identifiers e
1.5 Hintdirectives e
1.6 Numbers e e
1.7 Labels e
1.8 Character Strings v v v v i e e e e e e e e e e e e e e e
Constants
2.1 Ordinary constantS it e e e e e e e e e e e e e e e
22 Typed conStantso i e e e e
2.3 ResourCe strings i u e e e e e e e e e e
Types
3.1 Basetypeso e
3.1.1 Ordinal types o o e e e
Integers e
Booleantypes L
Enumeration types
Subrange types e e e e
3.1.2 Realtypes. o . i e e e e e
3.2 CharaCter types v v v v v i i i e e e e e e
32.1 CharorAnsiChar
322 WideChar e
3.2.3 Othercharacter types v v v v v i e e e e e e e e

11
11
12
13
13
14
14
14
15
16
17
18
18

20
20
21
22

CONTENTS

3.2.4 Single-byte String types 29
Short Strings e e e 30

ADSISINGS L. e 31

Code page conversionso u e e e 33
RawByteString 34

UTESString o o e e 34

3.2.5 Multi-byte String typeso 34
UnicodeStrings 35

WideStrings e 35

32.6 ConstantStrings o i e e e e e e e e e e e 35

3.2.7 PChar - Null terminated strings 36

32.8 Stingsizes 37

3.3 Structured Types o oL e e e 37
Packed structured types 37

330 AITAYS .« o o o e e 38
Static arrays v v oo e e e e e e e e e 39

Dynamic arrays 40

Dynamic array Type compatibility 42

Dynamic array COnStructor e 43

Packing and unpacking anarray 44

332 Recordtypes e 45
Record layoutandsize 46

Remarks and examples L oo 47

333 Settypes i e e e e e 47

334 Fletypes o o i e e e 48

34 Pointers e e e 49
3.5 Forward typedeclarations 51
3.6 Procedural types. L e e e 51
37 Variant types oo e e e e e e e e e e e e 54
37.1 Definitiono 54

3.7.2 Variants in assignments and expressions 56

3.7.3 Variants and interfaces 56

3.8 Typealiases e 57
Variables 59
4.1 Definition 59
4.2 Declaration L 59
4.3 SCOPE . o i 61
4.4 Initialized variables L. 61
4.5 Initializing variables using default 0oL 62

CONTENTS

4.6 Thread Variables 63
477 Properties v vt e e e e e e e e e e e e e e e 63
Objects 67
5.1 Declaration e 67
52 Fields e 68
53 Staticfields 69
5.4 Constructors and destructorso oo 70
55 Methods e 71
5.5.1 Declaration e 71
5.5.2 Methodinvocation Lo 72
Staticmethods 72

Virtual methods 73
Abstractmethods L 74

5.6 Visibility 75
Classes 76
6.1 Classdefinitions 76
6.2 Normalandstaticfields L o 80
6.2.1 Normal fields/variables 80

6.2.2 Class fields/variables 80

6.3 Classinstantiation 81
6.4 Classdestruction e e 82
6.5 Methods 83
6.5.1 Declaration 83

6.5.2 Invocation e 83

6.5.3 Virtualmethods Lo 83

6.54 Classmethods 84

6.5.5 Class constructors and destructors 85

6.5.6 Staticclassmethods Lo 87

6.5.7 Messagemethods 88

6.5.8 Usinginherited 90

6.6 Properties 91
6.6.1 Definition 91

6.6.2 Indexed propertiest e e 93

6.6.3 Array properties e e e e e e 94

6.6.4 Defaultproperties 95

6.6.5 Published properties L 95

6.6.6 Storage information 96

6.6.7 Overriding properties i i e e e e 96

6.7 Class Properties v v v v v v i e e e e e e e 97

CONTENTS

6.8 Nested types, constants and variables L. 98

7 Interfaces 100
7.1 Definition e 100

7.2 Interface identification: AGUID 101
7.3 Interface implementationso 102
7.4 Interface delegation 103

7.5 Interfacesand COM L 105
7.6 CORBA and other Interfaces 105

7.7 Referencecounting e 105

8 Generics 107
8.1 Introduction e 107

8.2 Generic type definition L. 107

8.3 Generic type specialization e 110

8.4 Generic type restriCtions e e e e e e 111

8.5 Delphi compatibility 113
8.5.1 Syntaxelements 113

8.5.2 Record typerestrictionso 114

853 Typeoverloads 114

8.5.4 Name space considerationso 114

8.5.5 Scopeconsiderations 115

8.6 Typecompatibility 115

8.7 Using the defaultintrinsic e 118

8.8 Awordaboutscope 118

8.9 Operator overloading and generics 120

9 Extended records 123
9.1 Definition 123

9.2 Extended record enumeratorso 125

10 Class, Record and Type helpers 128
10.1 Definition e e 128
10.2 Restrictionsonclasshelpers 129
10.3 Restrictions onrecord helpers 130
10.4 Considerations for (simple) type helpers 131
10.5 A note on scope and lifetime for record and type helpers 132
10.6 Inheritance e 134
10.7 Usage o o ot 134

11 Objective-Pascal Classes 138
11.1 Introductiono o 138

CONTENTS

11.2 Objective-Pascal class declarations 138
11.3 Formal declaration 140
11.4 Allocating and de-allocating Instances 142
11.5 Protocol definitions 143
11.6 Categories o v v v o e e e e e e e e e 144
11.7 Name scope and Identifiers 145
11.8 Selectors o o e 146
11.9 The idtype o e 146
11.10Enumeration in Objective-C classes 146
12 Expressions 148
12.1 EXpPression Syntax oo v v v vt i e e e e e e e e e e e e e 149
12.2 Functioncalls e 150
12.3 SetConStructors v v v vt e e e e e e 152
12.4 Value typecasts o it e e e e e e 153
12.5 Variable typecasts L e e e 153
12.6 Unaligned typecasts o v v i i e e e e e e e e e 154
12.7 The @ operator« . o vt ittt e e 155
12.8 Operators o v vt e e 156
12.8.1 Arithmetic operators i 156
12.8.2 Logical Operators v v v vt e e e e e e e e 156
12.8.3 Boolean Operatorso e e e e 157
12.8.4 String operators e e 157
12.8.5 Setoperators e e e 158
12.8.6 Relational operators 159
12.8.7 Class Operators v v v v vt i e e 160

13 Statements 163
13.1 Simple statements e e e e e 163
13.1.1 Assignments e e 163
13.1.2 Procedure statements 164
13.1.3 Gotostatements e e e e e e e 165

13.2 Structured statementso e e e 166
13.2.1 Compound statements 166
13.2.2 The Casestatement 167
1323 The If..then..elsestatement 168
13.24 TheFor..to/downto..dostatement 170
13.2.5 TheFor..in..dostatement. v v .. 171
13.2.6 The Repeat..untilstatement 178
13.27 TheWhile..dostatement 178
13.2.8 TheWith statement i 179

CONTENTS

13.2.9 Exception Statements e e e e 181

13.3 Assembler statements Lo e e 181
14 Using functions and procedures 182
14.1 Procedure declaration L 182
14.2 Function declaration L 183
14.3 Functionresults e e 183
144 Parameter lists L. e e 184
14.4.1 Value parameters v v v it e e e e 184
14.42 Variable parameters 185
14.4.3 Out parameters v v v vt e e e e e e e e e 186
14.4.4 Constant parameters v v v v b v e e e e e e e 187
14.4.5 Open array parameters v v v v v et e e e e e e e e 188
14.4.6 Arrayofconst 189

14.5 Managed types and reference counts L. 191
14.6 Functionoverloading 194
14.7 Forward declared functions 194
14.8 External functions 195
149 Assembler functions 196
14.10Modifiers e 196
14.10.0alias o oo 197
14.10.2cdecl 198
14103 exXport e 198
14.10410nline 199

T4 105Nt rrupt . . . v o v v e e e e e e e e e e e e 199
14.10.61ocheck L 199
14.10.71ocal 199
14.10.8noreturn e e 200
14.109nostackframe L 200
14.10.1@verload L 200
14.10.1bascal e 201
14.10.12ublic 201

T4 1003 @ISIEr o vt e e e e e e e e e 202
14.10.14afecall 202
14.10.13avere@isters oo i e e e e e e 203
14.10.060ftfloat 203
14.100%tdeallo 203
14.10.18arargs e e e 203
14.11Unsupported Turbo Pascal modifiers 203
15 Operator overloading 204

CONTENTS

15.1 Introduction L e 204
15.2 Operator declarations v v it e e e e e 204
15.3 ASSIZNMENt OPEratOrs ¢ . v v v v v e e e e e e e e e e e e e 205
15.4 Arithmetic operators Lo 209
15.5 Comparison Operator v v v v i i e e e e e e e e e 210
15.6 Tnoperator o v i i e e e e e e e e e e 211

16 Programs, units, blocks 213
16.1 Programs e e e e e e e 213
162 UNitS o o ottt e e e 214
16.3 Namespaces: Dotted Units 216
16.4 Unitdependencies o . i e e e 218
16.5 Blocks o o o e 219
16.6 SCOpe o 221
16.6.1 Blockscope 221

16.6.2 Recordscope o o v i i e 221

16.6.3 ClasS SCOPE .« v v v v v v e i e e e e e e e e e e e e e e 221

16.6.4 UnitSCOPE« v v v v it e e e 222

16.7 Libraries e e 222

17 Exceptions 224
17.1 Theraise statement v vttt e e e 224
17.2 The try...exceptstatement e 226
17.3 The try...finally statement e 227
17.4 Exception handling nesting 228
17.5 Exceptionclasses 228

18 Using assembler 230
18.1 Assembler statements oLl e e 230
18.2 Assembler procedures and functions o oL 0oL 230

List of Tables

3.1
3.2
33
34
3.5
3.6

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

13.1

14.1

Predefined integer typeso 24
Predefined integer typeso 25
Booleantypes 26
Supported Real types 28
PChar pointer arithmetic 36
String MEMOTrY SIZES . . .« o v v v v i v e e e e e e e 37
Precedence of operators 148
Binary arithmetic operators 156
Unary arithmetic operators e 156
Logical operators e e e e e 157
Boolean operators e e e 157
SELOPErators o o e e e e e e e e 158
Relational operators L 160
Class Operators v v v i s e e e e e e e e e 160
Allowed C constructs in Free Pascal 164
Unsupported modifiers 203

LIST OF TABLES

About this guide

This document serves as the reference for the Pascal language as implemented by the Free Pascal
compiler. It describes all Pascal constructs supported by Free Pascal, and lists all supported data
types. It does not, however, give a detailed explanation of the Pascal language: it is not a tuto-
rial. The aim is to list which Pascal constructs are supported, and to show where the Free Pascal
implementation differs from the Turbo Pascal or Delphi implementations.

The Turbo Pascal and Delphi Pascal compilers introduced various features in the Pascal language.
The Free Pascal compiler emulates these compilers in the appropriate mode of the compiler: certain
features are available only if the compiler is switched to the appropriate mode. When required for
a certain feature, the use of the -M command-line switch or { SMODE } directive will be indicated
in the text. More information about the various modes can be found in the user’s manual and the
programmer’s manual.

Earlier versions of this document also contained the reference documentation of the system unit and
objpas unit. This has been moved to the RTL reference guide.

Notations

Throughout this document, we will refer to functions, types and variables with typewriter font.
Files are referred to with a sans font: filename.

Syntax diagrams

All elements of the Pascal language are explained in syntax diagrams. Syntax diagrams are like flow
charts. Reading a syntax diagram means getting from the left side to the right side, following the
arrows. When the right side of a syntax diagram is reached, and it ends with a single arrow, this
means the syntax diagram is continued on the next line. If the line ends on 2 arrows pointing to each
other, then the diagram is ended.

Syntactical elements are written like this

»— syntactical elements are like this — —

Keywords which must be typed exactly as in the diagram:

»— keywords are like this <

When something can be repeated, there is an arrow around it:

»—f this can be repeated fl -

When there are different possibilities, they are listed in rows:
»—r First possibility J -
Second possibility —
Note, that one of the possibilities can be empty:
% First possibility ﬁ
Second possibility —

This means that both the first or second possibility are optional. Of course, all these elements can be
combined and nested.

LIST OF TABLES

About the Pascal language

The language Pascal was originally designed by Niklaus Wirth around 1970. It has evolved sig-
nificantly since that day, with a lot of contributions by the various compiler constructors (Notably:
Borland). The basic elements have been kept throughout the years:

e Easy syntax, rather verbose, yet easy to read. Ideal for teaching.

Strongly typed.

Procedural.

e Case insensitive.

Allows nested procedures.

Easy input/output routines built-in.

The Turbo Pascal and Delphi Pascal compilers introduced various features in the Pascal language,
most notably easier string handling and object orientedness. The Free Pascal compiler initially emu-
lated most of Turbo Pascal and later on Delphi. It emulates these compilers in the appropriate mode
of the compiler: certain features are available only if the compiler is switched to the appropriate
mode. When required for a certain feature, the use of the —-M command-line switch or { SMODE }
directive will be indicated in the text. More information about the various modes can be found in the
user’s manual and the programmer’s manual.

10

Chapter 1

Pascal Tokens

Tokens are the basic lexical building blocks of source code: they are the *words’ of the language:
characters are combined into tokens according to the rules of the programming language. There are
five classes of tokens:

reserved words These are words which have a fixed meaning in the language. They cannot be
changed or redefined.

identifiers These are names of symbols that the programmer defines. They can be changed and
re-used. They are subject to the scope rules of the language.

operators These are usually symbols for mathematical or other operations: +, -, * and so on.
separators This is usually white-space.

constants Numerical or character constants are used to denote actual values in the source code, such
as 1 (integer constant) or 2.3 (float constant) or ’String constant’ (a string: a piece of text).

In this chapter we describe all the Pascal reserved words, as well as the various ways to denote
strings, numbers, identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special character symbols in a Pascal source file.

| |
Recognised symbols

»— letter — A...Z — -
Loz

v digit - 0...9 — —

»— hex digit 0..9 - >
\EA...Fj
a...f

The following characters have a special meaning:

11

CHAPTER 1. PASCAL TOKENS

t-x /=<>01 ., ():"@C{} s #s&5
and the following character pairs too:
<< >> xx <> >< <= >= 1= 4= —= %= /= (% %) (. .) //

When used in a range specifier, the character pair (. is equivalent to the left square bracket [.
Likewise, the character pair .) is equivalent to the right square bracket]. When used for comment
delimiters, the character pair (is equivalent to the left brace { and the character pair *) is equiva-
lent to the right brace }. These character pairs retain their normal meaning in string expressions.

1.2 Comments

Comments are pieces of the source code which are completely discarded by the compiler. They exist
only for the benefit of the programmer, so he can explain certain pieces of code. For the compiler, it
is as if the comments were not present.

The following piece of code demonstrates a comment:

(» My beautiful function returns an interesting result x)
Function Beautiful : Integer;

The use of (* and *) as comment delimiters dates from the very first days of the Pascal language. It
has been replaced mostly by the use of { and } as comment delimiters, as in the following example:

{ My beautiful function returns an interesting result }
Function Beautiful : Integer;

The comment can also span multiple lines:

My beautiful function returns an interesting result,
but only if the argument A is less than B.
}

Function Beautiful (A,B : Integer): Integer;

Single line comments can also be made with the // delimiter:

// My beautiful function returns an interesting result
Function Beautiful : Integer;

The comment extends from the // character till the end of the line. This kind of comment was
introduced by Borland in the Delphi Pascal compiler.

Free Pascal supports the use of nested comments. The following constructs are valid comments:

(» This is an old style comment x)
{ This is a Turbo Pascal comment }
// This is a Delphi comment. All is ignored till the end of the line.

12

CHAPTER 1. PASCAL TOKENS

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 =*) }
(» Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }

(* comment 1 // Comment 2 x)
// comment 1 (% comment 2 =)
// comment 1 { comment 2 }

The last two comments must be on one line. The following two will give errors:

// Valid comment { No longer valid comment !!

}

and

// Valid comment (% No longer valid comment !!
*)

The compiler will react with a invalid character’ error when it encounters such constructs, regardless
of the —Mtp switch.

Remark: In TP and Delphi mode, nested comments are not allowed, for maximum compatibility with
existing code for those compilers.

1.3 Reserved words

Reserved words are part of the Pascal language, and as such, cannot be redefined by the programmer.
Throughout the syntax diagrams they will be denoted using a bold typeface. Pascal is not case
sensitive so the compiler will accept any combination of upper or lower case letters for reserved
words.

We make a distinction between Turbo Pascal and Delphi reserved words. In TP mode, only the Turbo
Pascal reserved words are recognised, but the Delphi ones can be redefined. By default, Free Pascal
recognises the Delphi reserved words.

1.3.1 Turbo Pascal reserved words

The following keywords exist in Turbo Pascal mode

absolute file object string
and for of then
array function operator to
asm goto or type
begin if packed unit
case implementation procedure until
const in program uses
constructor inherited record var
destructor inline reintroduce while
div interface repeat with
do label self XOor
downto mod set

else nil shl

end not shr

13

CHAPTER 1. PASCAL TOKENS

1.3.2 Free Pascal reserved words

On top of the Turbo Pascal reserved words, Free Pascal also considers the following as reserved

words:
dispose false true
exit new

1.3.3 Object Pascal reserved words

The reserved words of Object Pascal (used in Delphi or Objfpc mode) are the same as the Turbo
Pascal ones, with the following additional keywords:

as finalization library raise

class finally on resourcestring
dispinterface initialization out threadvar
except inline packed try

exports is property

1.3.4 Modifiers

The following is a list of all modifiers. They are not exactly reserved words in the sense that they can
be used as identifiers, but in specific places, they have a special meaning for the compiler, i.e., the
compiler considers them as part of the Pascal language.

Remark:

Remark:

absolute export nodefault reintroduce
abstract external noreturn result

alias far nostackframe safecall
assembler farlé oldfpccall saveregisters
bitpacked forward otherwise softfloat
break generic overload specialize
cdecl helper override static
continue implements pascal stdcall
cppdecl index platform stored

cvar interrupt private strict
default iochecks protected unaligned
deprecated local public unimplemented
dynamic message published varargs
enumerator name read virtual
experimental near register write

Predefined types such as Byte, Boolean and constants such as maxint are not reserved words.
They are identifiers, declared in the system unit. This means that these types can be redefined in
other units. The programmer is however not encouraged to do this, as it will cause a lot of confusion.

As of version 2.5.1 it is possible to use reserved words as identifiers by escaping them with a & sign.
This means that the following is possible

var
&var integer;
begin
&var:=1;

Writeln (&var) ;

14

Remark:

CHAPTER 1. PASCAL TOKENS

end.

however, it is not recommended to use this feature in new code, as it makes code less readable. It
is mainly intended to fix old code when the list of reserved words changes and encompasses a word
that was not yet reserved (See also section 1.4, page 15).

1.4 Identifiers

Identifiers denote programmer defined names for specific constants, types, variables, procedures
and functions, units, and programs. All programmer defined names in the source code —excluding
reserved words— are designated as identifiers.

Identifiers consist of between 1 and 127 significant characters (letters, digits and the underscore
character), of which the first must be a letter (a-z or A-Z), or an underscore (_). The following
diagram gives the basic syntax for identifiers.

[|
Identifiers

»— identifier \Lletter‘J >
- letter —
digit -

Like Pascal reserved words, identifiers are case insensitive, that is, both
myprocedure;
and
MyProcedure;

refer to the same procedure.

As of version 2.5.1 it is possible to specify a reserved word as an identifier by prepending it with an
ampersand (&). This means that the following is possible:

program testdo;
procedure &do;

begin
end;

begin
&do;

end.

The reserved word do is used as an identifier for the declaration as well as the invocation of the
procedure ’do’.

15

CHAPTER 1. PASCAL TOKENS

1.5 Hint directives

Most identifiers (constants, variables, functions or methods, properties) can have a hint directive
appended to their definition:

[|
Hint directives

»— hint directive — -
+ Deprecated

L string constant J
Experimental —
Platform
Unimplemented —

Whenever an identifier marked with a hint directive is later encountered by the compiler, then a
warning will be displayed, corresponding to the specified hint.

deprecated The use of this identifier is deprecated, use an alternative instead. The deprecated key-
word can be followed by a string constant with a message. The compiler will show this mes-
sage whenever the identifier is encountered.

experimental The use of this identifier is experimental: this can be used to flag new features that
should be used with caution.

platform This is a platform-dependent identifier: it may not be defined on all platforms.

unimplemented This should be used on functions and procedures only. It should be used to signal
that a particular feature has not yet been implemented.

The following are examples:

Const
AConst = 12 deprecated;

var
P : integer platform;

Function Something : Integer; experimental;

begin
Something:=P+AConst;
end;

begin
Something;
end.

This would result in the following output:

testhd.pp(ll,15) Warning: Symbol "p" is not portable
testhd.pp(l11l,22) Warning: Symbol "AConst" is deprecated
testhd.pp(15,3) Warning: Symbol "Something" is experimental

Hint directives can follow all kinds of identifiers: units, constants, types, variables, functions, proce-
dures and methods.

16

CHAPTER 1. PASCAL TOKENS

1.6 Numbers

Numbers are by default denoted in decimal notation. Real (or decimal) numbers are written using
engineering or scientific notation (e.g. 0.314E1).

For integer type constants, Free Pascal supports 4 formats:

1. Normal, decimal format (base 10). This is the standard format.

2. Hexadecimal format (base 16), in the same way as Turbo Pascal does. To specify a constant
value in hexadecimal format, prepend it with a dollar sign ($). Thus, the hexadecimal $FF
equals 255 decimal. Note that case is insignificant when using hexadecimal constants.

3. As of version 1.0.7, Octal format (base 8) is also supported. To specify a constant in octal
format, prepend it with an ampersand (&). For instance 15 is specified in octal notation as
&17.

4. Binary notation (base 2). A binary number can be specified by preceding it with a percent sign
(%). Thus, 255 can be specified in binary notationas $11111111.

The following diagrams show the syntax for numbers.

[|
Numbers

»— hex digit sequence ff hex digit —
»— octal digit sequence ff octal digit — —

»— bin digit sequence —— 1 - -
[Lo]

=— digit sequence T digit -

»— unsigned integer — digit sequence —
$ — hex digit sequence —
& — octal digit sequence
%

- bin digit sequence —

s+ -

=— unsigned real — digit sequence — —~
L . — digit sequence J L scale factor J

»— scale factor fT E jﬁ digit sequence —
e sign

»— unsigned number —— unsigned real — »—
Tunsigned integer J

»— signed number ﬁ unsigned number -
sign

Remark: Octal and Binary notation are not supported in TP or Delphi compatibility mode.

17

CHAPTER 1. PASCAL TOKENS

1.7 Labels

A label is a name for a location in the source code to which can be jumped to from another location
with a goto statement. A Label is a standard identifier or a digit sequence.

Label

»— label — digit sequence —
L identifier _J

Remark: The —Sg or -Mtp switches must be specified before labels can be used. By default, Free Pascal
doesn’t support 1abel and goto statements. The { SGOTO ON} directive can also be used to allow
use of labels and the goto statement.

The following are examples of valid labels:

Label
123,
abc;

1.8 Character strings

A character string (or string for short) is a sequence of zero or more characters (byte sized), enclosed
in single quotes, and on a single line of the program source code: no literal carriage return or linefeed
characters can appear in the string.

A character set with nothing between the quotes (’ /) is an empty string.

| |
Character strings

»— character string quoted string j -
[control string —

»— quoted string -’ T string character T ’ >

»— string character fT Any character except ’ or CR l >

»— control string fT # — unsigned integer 7] >

The string consists of standard, 8-bit ASCII characters or Unicode (normally UTF-8 encoded) char-
acters. The control string can be used to specify characters which cannot be typed on a
keyboard, such as #27 for the escape character.

The single quote character can be embedded in the string by typing it twice. The C construct of
escaping characters in the string (using a backslash) is not supported in Pascal.

The following are valid string constants:

18

CHAPTER 1. PASCAL TOKENS

"This is a pascal string’

rr
Ial
"A tabulator character: "#9’ is easy to embed’

The following is an invalid string:

"the string starts here
and continues here’

The above string must be typed as:

"the string starts here’ #13#10' and continues here’
or

"the string starts here’ #10' and continues here’
on unices (including Mac OS X), and as

"the string starts here’ #13’ and continues here’

on a classic Mac-like operating system.

It is possible to use other character sets in strings: in that case the codepage of the source file must
be specified with the { SCODEPAGE XXX} directive or with the —Fc command line option for the
compiler. In that case the characters in a string will be interpreted as characters from the specified
codepage.

19

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both ordinary and typed constants. They are declared
in a constant declaration block in a unit, program or class, function or procedure declaration (section
16.5, page 219).

2.1 Ordinary constants

n_n

Ordinary constants declarations are constructed using an identifier name followed by an token,
and followed by an optional expression consisting of legal combinations of numbers, characters,
boolean values or enumerated values as appropriate. The following syntax diagram shows how to
construct a legal declaration of an ordinary constant.

f |
Constant declaration

»— constant declaration 7 identifier — = — expression — hintdirectives — ; T—N

The compiler must be able to evaluate the expression in a constant declaration at compile time. This
means that most of the functions in the Run-Time library cannot be used in a constant declaration.
Operators suchas+, -, *, /, not, and, or, div, mod, ord, chr, sizeof, pi,
int, trunc, round, frac, odd can be used, however. For more information on expres-
sions, see chapter 12, page 148.

Only constants of the following types can be declared:

e Ordinal types

e Set types

Pointer types (but the only allowed value is Ni1).

Real types
e Char,

e String

20

CHAPTER 2. CONSTANTS

The following are all valid constant declarations:

Const
e = 2.7182818; { Real type constant. }
a = 2; { Ordinal (Integer) type constant. }
c = "47; { Character type constant. }
s = 'This is a constant string’; {String type constant.}

sc = chr(32)

ls = SizeOf (Longint);
P = Nil;

Ss = [1,2];

Assigning a value to an ordinary constant is not permitted. Thus, given the previous declaration, the
following will result in a compiler error:

s := ’"some other string’;

For string constants, the type of the string is dependent on some compiler switches. If a specific type
is desired, a typed constant should be used, as explained in the following section.

Prior to version 1.9, Free Pascal did not correctly support 64-bit constants. As of version 1.9, 64-bit
constants can be specified.

2.2 Typed constants

Sometimes it is necessary to specify the type of a constant, for instance for constants of complex
structures (defined later in the manual). Their definition is quite simple.

[1
Typed constant declaration

=typed constant declaration fT identifier — : — type — = — typed constant — hintdirective — ; T»

»— typed constant constant »—
address constant
array constant —
record constant
procedural constant

Contrary to ordinary constants, a value can be assigned to them at run-time. This is an old concept
from Turbo Pascal, which has been replaced with support for initialized variables: For a detailed
description, see section 4.4, page 61.

Support for assigning values to typed constants is controlled by the { $J} directive: it can be switched
off, but is on by default (for Turbo Pascal compatibility). Initialized variables are always allowed.

Remark: It should be stressed that typed constants are automatically initialized at program start. This is also
true for local typed constants and initialized variables. Local typed constants are also initialized at
program start. If their value was changed during previous invocations of the function, they will retain
their changed value, i.e. they are not initialized each time the function is invoked.

21

Remark:

Remark:

CHAPTER 2. CONSTANTS

2.3 Resource strings

A special kind of constant declaration block is the Resourcestring block. Resourcestring dec-
larations are much like constant string declarations: resource strings act as constant strings, but they
can be localized by means of a set of special routines in the objpas unit. A resource string declaration
block is only allowed in the Delphi or Objfpc modes.

The following is an example of a resourcestring definition:

Resourcestring

FileMenu rgFile...’;
EditMenu = ’&Edit...’;

All string constants defined in the resourcestring section are stored in special tables. The strings in
these tables can be manipulated at runtime with some special mechanisms in the objpas unit.

Semantically, the strings act like ordinary constants; It is not allowed to assign values to them (except
through the special mechanisms in the objpas unit). However, they can be used in assignments or
expressions as ordinary string constants. The main use of the resourcestring section is to provide an
easy means of internationalization.

More on the subject of resourcestrings can be found in the Programmer’s Guide, and in the objpas
unit reference.

Note that a resource string which is given as an expression will not change if the parts of the expres-
sion are changed:

resourcestring
Partl = ’'First part of a long string.’;
Part2 = ’Second part of a long string.’;

Sentence = Partl+’ ’+Part2;

If the localization routines translate Part1l and Part2, the Sentence constant will not be trans-
lated automatically: it has a separate entry in the resource string tables, and must therefor be trans-
lated separately. The above construct simply says that the initial value of Sentence equals Part 1+’
"+Part?2.

Likewise, when using resource strings in a constant array, only the initial values of the resource
strings will be used in the array: when the individual constants are translated, the elements in the
array will retain their original value.

resourcestring
Yes = "Yes.’;
No = '"No.’;

Var
YesNo : Array[Boolean] of string = (No, Yes);
B : Boolean;

begin
Writeln (YesNo[B]);

end.

This will print *Yes.” or 'No.” depending on the value of B, even if the constants Yes and No have
been localized by some localization mechanism.

22

../prog/prog.html

Chapter 3
Types

All variables have a type. Free Pascal supports the same basic types as Turbo Pascal, with some extra
types from Delphi as well as some of its own.

The programmer can declare his own types, which is in essence defining an identifier that can be
used to denote this custom type when declaring variables further in the source code.. Declaring a
type happens in a Type block (section 16.5, page 219), which is a collection of type declarations,
separated by semicolons:

[1
Type declaration

»— type declaration - identifier — = — type — L J ;— >
hint directives

There are 8 major kinds of types :

[[
Types

=»— type —— simple type — —~
—— string type ——
+ structured type —
— pointer type —
I procedural type —
— generic type —
- specialized type —
L— type alias —

Each of these cases will be examined separately.

3.1 Base types

The base or simple types of Free Pascal are the Delphi types. We will discuss each type separately.

23

CHAPTER 3. TYPES

| |
Simple types

»— simple type — ordinal type — —
T— real type J

=— real type — real type identifier -

3.1.1 Ordinal types

With the exception of int 64, gword and Real types, all base types are ordinal types. Ordinal types
have the following characteristics:

1. Ordinal types are countable and ordered, i.e. it is, in principle, possible to start counting them
one by one, in a specified order. This property allows the operation of functions as Inc, Ord,
Dec on ordinal types to be defined.

2. Ordinal values have a smallest possible value. Trying to apply the Pred function on the
smallest possible value will generate a range check error if range checking is enabled.

3. Ordinal values have a largest possible value. Trying to apply the Succ function on the largest
possible value will generate a range check error if range checking is enabled.

Integers

A list of pre-defined integer types is presented in table (3.1).

Table 3.1: Predefined integer types

Name
Integer
Shortint
SmallInt
Longint
Longword
Int64
Byte
Word
Cardinal
QWord
Boolean
ByteBool
WordBool
LongBool
Char

The integer types, and their ranges and sizes, that are predefined in Free Pascal are listed in table
(3.2). Please note that the qword and int 64 types are not true ordinals, so some Pascal constructs
will not work with these two integer types.

24

CHAPTER 3. TYPES

Table 3.2: Predefined integer types

Type Range Size in bytes
Byte 0..255 1
Shortint -128 .. 127 1
Smallint -32768 .. 32767 2
Word 0.. 65535 2
Integer either smallint or longint size 2 or 4
Cardinal longword 4
Longint -2147483648 .. 2147483647 4
Longword 0 .. 4294967295 4
Int64 -9223372036854775808 .. 9223372036854775807 8
QWord 0.. 18446744073709551615 8

The integer type maps to the smallint type in the default Free Pascal mode. It maps to either a
longint in either Delphi or ObjFPC mode. The cardinal type is currently always mapped to the
longword type.

Remark: All decimal constants which do no fit within the -2147483648..2147483647 range are silently and
automatically parsed as 64-bit integer constants as of version 1.9.0. Earlier versions would convert it
to a real-typed constant.

As a pascal compiler, Free Pascal does automatic type conversion and upgrading in expressions
where different kinds of integer types are used:

1. Every platform has a "native" integer size, depending on whether the platform is 8-bit, 16-bit,
32-bit or 64-bit. e.g. On AVR this is 8-bit.

2. Every integer smaller than the "native" size is promoted to a signed version of the "native" size.
Integers equal to the "native" size keep their signedness.

3. The result of binary arithmetic operators (+, -, *, etc.) is determined in the following way:

(a) If at least one of the operands is larger than the native integer size, the result is chosen
to be the smallest type that encompasses the ranges of the types of both operands. This
means that mixing an unsigned with a smaller or equal in size signed will produce a
signed type that is larger than both of them.

(b) If both operands have the same signedness, the result is the same type as them. The
only exception is subtracting (-): in the case of unsigned-unsigned subtracting produces
a signed result in FPC (as in Delphi, but not in TP7).

(c) Mixing signed and unsigned operands of the "native" int size produces a larger signed
result. This means that mixing longint and longword on 32-bit platforms will produce
an int64. Similarly, mixing byte and shortint on 8-bit platforms (AVR) will produce a
smallint.

Boolean types
Free Pascal supports the Boolean type, with its two pre-defined possible values True and False.

These are the only two values that can be assigned to a Boolean type. Of course, any expression
that resolves to a boolean value, can also be assigned to a boolean type.

25

CHAPTER 3. TYPES

Table 3.3: Boolean types

Name Size Ord(True)
Boolean 1 1
ByteBool Any nonzero value

1
WordBool 2 Any nonzero value
LongBool 4 Any nonzero value

Free Pascal also supports the ByteBool, WordBool and LongBool types. These are of type
Byte, Word or Longint, but are assignment compatible with a Boolean: the value False is
equivalent to O (zero) and any nonzero value is considered True when converting to a boolean value.
A boolean value of True is converted to -1 in case it is assigned to a variable of type LongBool.

Assuming B to be of type Boolean, the following are valid assignments:

B := True;
B := False;
B = 1<>2; { Results in B := True }

Boolean expressions are also used in conditions.

Remark: In Free Pascal, boolean expressions are by default always evaluated in such a way that when the
result is known, the rest of the expression will no longer be evaluated: this is called short-cut boolean
evaluation.

In the following example, the function Func will never be called, which may have strange side-

effects.
B := False;
A := B and Func;

Here Func is a function which returns a Boolean type.

This behaviour is controllable by the { $B } compiler directive.
Enumeration types
Enumeration types are supported in Free Pascal. On top of the Turbo Pascal implementation, Free

Pascal allows also a C-style extension of the enumeration type, where a value is assigned to a partic-
ular element of the enumeration list.

[1
Enumerated types

»— enumerated type — (— identifier list —) - »—
[assigned enum list J

»— identifier list T identifier >

»— assigned enum list 7 identifier — := — expression | -

26

CHAPTER 3. TYPES

(see chapter 12, page 148 for how to use expressions) When using assigned enumerated types, the
assigned elements must be in ascending numerical order in the list, or the compiler will complain.
The expressions used in assigned enumerated elements must be known at compile time. So the
following is a correct enumerated type declaration:

Type
Direction = (North, East, South, West);

A C-style enumeration type looks as follows:

Type
EnumType = (one, two, three, forty := 40, fortyone);
As aresult, the ordinal number of forty is 40, and not 3, as it would be whenthe ” := 40’ wasn’t

present. The ordinal value of fortyone is then 41, and not 4, as it would be when the assignment
wasn’t present. After an assignment in an enumerated definition the compiler adds 1 to the assigned
value to assign to the next enumerated value.

When specifying such an enumeration type, it is important to keep in mind that the enumerated
elements should be kept in ascending order. The following will produce a compiler error:

Type
EnumType = (one, two, three, forty := 40, thirty := 30);

It is necessary to keep forty and thirty in the correct order. When using enumeration types it is
important to keep the following points in mind:

1. The Pred and Succ functions cannot be used on this kind of enumeration types. Trying to
do this anyhow will result in a compiler error.

2. Enumeration types are stored using a default, independent of the actual number of values:
the compiler does not try to optimize for space. This behaviour can be changed with the
{SPACKENUM n} compiler directive, which tells the compiler the minimal number of bytes
to be used for enumeration types. For instance

Type
{$PACKENUM 4}

LargeEnum = (BigOne, BigTwo, BigThree);
{SPACKENUM 1}

SmallEnum = (one, two, three);
Var S : SmallEnum;

L : LargeEnum;

begin

WriteLn (’Small enum : ’,SizeOf (S));

WriteLn (’Large enum : ’,SizeOf(L));
end.

will, when run, print the following:

Small enum : 1
Large enum : 4

More information can be found in the Programmer’s Guide, in the compiler directives section.

27

../prog/prog.html

CHAPTER 3. TYPES

Subrange types

A subrange type is a range of values from an ordinal type (the host type). To define a subrange type,
one must specify its limiting values: the highest and lowest value of the type.

[[
Subrange types

»— subrange type - constant — .. — constant -

Some of the predefined integer types are defined as subrange types:

Type
Longint = $80000000..$7fffffff;
Integer = -32768..32767;
shortint = -128..127;
byte = 0..255;
Word = 0..65535;

Subrange types of enumeration types can also be defined:

Type
Days = (monday, tuesday,wednesday, thursday, friday,
saturday, sunday) ;
WorkDays = monday .. friday;
WeekEnd = Saturday .. Sunday;

3.1.2 Real types

Free Pascal uses the math coprocessor (or emulation) for all its floating-point calculations. The Real
native type is processor dependent, but it is either Single or Double. Only the IEEE floating point
types are supported, and these depend on the target processor and emulation options. The true Turbo
Pascal compatible types are listed in table (3.4).

Table 3.4: Supported Real types

Type Range Significant digits Size
Real platform dependant m 4or8
Single 1.5E-45 .. 3.4E38 7-8 4
Double 5.0E-324 .. 1.7E308 15-16 8
Extended 1.9E-4932 .. 1.1E4932 19-20 10
Comp -2E64+1 .. 2E63-1 19-20 8
Currency -922337203685477.5808 .. 922337203685477.5807 19-20 8

The Comp type is, in effect, a 64-bit integer and is not available on all target platforms. To get more
information on the supported types for each platform, refer to the Programmer’s Guide.

The currency type is a fixed-point real data type which is internally used as an 64-bit integer type
(automatically scaled with a factor 10000), this minimalizes rounding errors.

28

../prog/prog.html

CHAPTER 3. TYPES

3.2 Character types

3.2.1 Char or AnsiChar

Free Pascal supports the type Char. A Char is exactly 1 byte in size, and contains one ASCII
character.

k)

A character constant can be specified by enclosing the character in single quotes, as follows : ’a’ or
A’ are both character constants.

A character can also be specified by its character value (commonly an ASCII code), by preceding the
ordinal value with the number symbol (#). For example specifying # 65 would be the same as * A’ .

Also, the caret character (*) can be used in combination with a letter to specify a character with
ASCII value less than 27. Thus ~G equals #7 - G is the seventh letter in the alphabet. The compiler
is rather sloppy about the characters it allows after the caret, but in general one should assume only
letters.

When the single quote character must be represented, it should be typed two times successively, thus
7 represents the single quote character.

To distinguish Char from WideChar, the system unit also defines the AnsiChar type, which is
the same as the char type. In future versions of FPC, the Char type may become an alias for either
WideChar or AnsiChar.

3.2.2 WideChar

Free Pascal supports the type WideChar. A WideChar is exactly 2 bytes in size, and contains one
UNICODE character in UTF-16 encoding.

A unicode character can be specified by its character value (an UTF-16 code), by preceding the
ordinal value with the number symbol (#).

A normal ansi (1-byte) character literal can also be used for a widechar, the compiler will automati-
cally convert it to a 2-byte UTF-16 character.

The following defines some greek characters (phi, omega):

Const
C3 : widechar = #$03A8;
C4 : widechar = #S03A9;

The same can be accomplished by typecasting a word to widechar:

Const
C3 : widechar = widechar ($03A8);
C4 : widechar widechar ($S03A9);

3.2.3 Other character types

Free Pascal defines some other character types in the system unit such as UCS2Char, UCS4Char,
UniCodeChar. However, no special support for these character types exists, they have been defined
for Delphi compatibility only.

3.2.4 Single-byte String types

Free Pascal supports the St ring type as it is defined in Turbo Pascal: a sequence of single-byte
characters with an optional size specification. It also supports ansistrings (with unlimited length) and

29

CHAPTER 3. TYPES

codepage information' as in Delphi.

To declare a variable as a string, use the following type specification:

| |
String Type

»— string type string L J -
[- unsigned integer -] -
type string fT (— unsigned integer —) —

[ansistring

If there is a size specifier (using square brackets), then its maximum value - indicating the maximum
size of the string - is 255. If there is a codepage specifier, (using round brackets) it indicates an
ansistring with associated code page information.

The meaning of a string declaration statement without size and code page indication is interpreted
differently depending on the { $H} switch:

var
A : String;

If no size and code page indication indication is present, the above declaration can declare an an-
sistring or a short string.

Whatever the actual type, single byte strings can be used interchangeably. The compiler always takes
care of the necessary type conversions. Note, however, that the result of an expression that contains
ansistrings and short strings will always be an ansistring.

Short strings
A string declaration declares a short string in the following cases:

1. If the $H switch is off: { SH-}, the string declaration will always be a short string declaration.

2. If the switch is on { $H+}, and there is a maximum length (the size) specifier, the declaration
is a short string declaration.

Short strings are always assumed to use the system code page. The predefined type ShortString
is defined as a string of size 255:

ShortString = String[255];

If the size of the string is not specified, 255 is taken as a default. The actual length of the string can
be obtained with the Length standard runtime routine. For example in

{SH-}
Type

NameString = String[10];
StreetString = String;

1 As of version 3.0 of Free Pascal

30

CHAPTER 3. TYPES

NameString can contain a maximum of 10 characters. While St reet St ring can contain up to
255 characters.

Remark: Short strings have a maximum length of 255 characters: when specifying a maximum length, the
maximum length may not exceed 255. If a length larger than 255 is attempted, then the compiler will
give an error message:

Error: string length must be a value from 1 to 255

For short strings, the length is stored in the character at index 0. Old Turbo Pascal code relies on this,
and it is implemented similarly in Free Pascal.

Despite this, to write portable code, it is best to set the length of a shortstring with the Set Length
call, and to retrieve it with the Length call. These functions will always work, whatever the internal
representation of the shortstrings or other strings in use: this allows easy switching between the
various string types.

Ansistrings

Ansistrings are strings that have no length limit, and have a code page associated with them?. They
are reference counted and are guaranteed to be null terminated.

Internally, an ansistring is treated as a pointer: the actual content of the string is stored on the heap,
as much memory as needed to store the string content is allocated.

If no codepage is given in the declaration, the system codepage is assumed. What codepage this is,
is determined by the DefaultSystemCodePage constant in the system unit.

This is all handled transparently, i.e. they can be manipulated as a normal short string. Ansistrings
can be defined using the predefined AnsiString type or using the string keyword in mode
{$H+}.

Remark: The null-termination does not mean that null characters (char(0) or #0) cannot be used: the null-
termination is not used internally, but is there for convenience when dealing with external routines
that expect a null-terminated string (as most C routines do).

If the {$H} switch is on, then a string definition using the regular St ring keyword that doesn’t
contain a length specifier, will be regarded as an ansistring as well. If a length specifier is present, a
short string will be used, regardless of the { $H} setting.

If the string is empty ("), then the internal pointer representation of the string pointer is Nil. If the
string is not empty, then the pointer points to a structure in heap memory.

The internal representation as a pointer, and the automatic null-termination make it possible to type-
cast an ansistring to a pchar. If the string is empty (so the pointer is Ni1) then the compiler makes
sure that the typecasted pchar will point to a null byte.

Assigning one ansistring to another doesn’t involve moving the actual string. A statement
S2:=S1;

results in the reference count of S2 being decreased with 1, The reference count of S1 is increased
by 1, and finally S1 (as a pointer) is copied to S2. This is a significant speed-up in the code.

If the reference count of a string reaches zero, then the memory occupied by the string is deallocated
automatically, and the pointer is set to Ni1, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initially allocates just memory for a pointer,
not more. This pointer is guaranteed to be N1i1, meaning that the string is initially empty. This is true
for local and global ansistrings or ansistrings that are part of a structure (arrays, records or objects).

2codepage was introduced in version 3.0 of Free Pascal

31

CHAPTER 3. TYPES

This does introduce an overhead. For instance, declaring

Var
A : Array[l..100000] of string;

Will copy the value Nil 100,000 times into A. When A goes out of scope, then the reference count
of the 100,000 strings will be decreased by 1 for each of these strings. All this happens invisible to
the programmer, but when considering performance issues, this is important.

Memory for the string content will be allocated only when the string is assigned a value. If the string
goes out of scope, then its reference count is automatically decreased by 1. If the reference count
reaches zero, the memory reserved for the string is released.

If a value is assigned to a character of a string that has a reference count greater than 1, such as in the
following statements:

S:=T; { reference count for S and T is now 2 }
S[I]:="@";

then a copy of the string is created before the assignment. This is known as copy-on-write semantics.
It is possible to force a string to have reference count equal to 1 with the UniqueString call:

S:=T;

R:=T; // Reference count of T is at least 3
UniqueString (T);

// Reference count of T is quaranteed 1

It’s recommended to do this e.g. when typecasting an ansistring to a PChar var and passing it to a C
routine that modifies the string.

The Length function must be used to get the length of an ansistring: the length is not stored at
character O of the ansistring. The construct

L:=ord(S[0]);

which was valid for Turbo Pascal shortstrings, is no longer correct for Ansistrings. The compiler will
warn if such a construct is encountered.

To set the length of an ansistring, the Set Length function must be used. Constant ansistrings have
a reference count of -1 and are treated specially, The same remark as for Length must be given:
The construct

which was valid for Turbo Pascal shortstrings, is no longer correct for Ansistrings. The compiler will
warn if such a construct is encountered.

Ansistrings are converted to short strings by the compiler if needed, this means that the use of an-
sistrings and short strings can be mixed without problems.

Ansistrings can be typecasted to PChar or Pointer types:
Var P : Pointer;

PC : PChar;

S : AnsiString;

begin

32

CHAPTER 3. TYPES

S :='This is an ansistring’;
PC:=Pchar (S) ;
P :=Pointer (S);

There is a difference between the two typecasts. When an empty ansistring is typecasted to a pointer,
the pointer will be Ni1l. If an empty ansistring is typecasted to a PChar, then the result will be a
pointer to a zero byte (an empty string).

The result of such a typecast must be used with care. In general, it is best to consider the result of
such a typecast as read-only, i.e. only suitable for passing to a procedure that needs a constant pchar
argument.

It is therefore not advisable to typecast one of the following:
1. Expressions.

2. Strings that have reference count larger than 1. In this case you should call Uniquestring
to ensure the string has reference count 1.

Code page conversions

Since strings have code page information associated with them, it is important to know which code
page a string uses:

e Short strings always use the system code page.
e Plain ansistrings use the system code page.
e Single byte strings with declared code page use that code page.

e The RawBytestring type has no code page information associated with it.

The compiler will convert the code page of strings as needed: When assigning a string, the actual
codepage of the source string will always be converted to the declared code page of the target string.

This means that in the following code:

Type
TStringl = Type String(1252);
TString2 Type String(1251);

Var
A : TStringl;
B : TString2;

begin
A:="123"+"345"+intToStr (123);
B:=A;

Writeln(’B : ’,StringRefCount (B));
Writeln(’A : ’,StringRefCount (A));
end.

The compiler will convert the contents in string B to the codepage of string A. Note that if a code page
conversion takes place, the reference count mechanism is not used: a new string will be allocated.

This automated conversion of code pages can slow down the code seriously, so care must be taken to
see to it that the code page conversions are limited to a minimum.

33

CHAPTER 3. TYPES

The code page of a string can be set explicitly using the Set CodePage routine of the system unit.
Calling this routine will convert the value of a string to the requested code page.

Remark: Code page conversions can result in loss of data: if a certain character cannot be represented in the
target code page, the output for that character is undefined.

Remark: Code page support requires quite some helper routines, these are implemented in the unicodestring
manager. On windows, the system routines are used for this. On Unices, the cwstring unit
can be used to link to the C library and use the C library conversion support. Alternatively, the
fpwidestring unit contains a unicodestring manager implemented natively in Object Pascal.

RawByteString

The pre-defined RawByteString type is an ansistring string type without codepage information
(CP_NONE):

Type
RawByteString = type ansistring (CP_NONE) ;

It is treated specially in the sense that if the conversion routines encounter CP_NONE in a target
string, no code page conversion is performed, the code page of the source string is preserved.

For this reason, most single-byte string routines in the system and sysutils units use the RawByteString
type.

UTF8String

Single-byte code page strings can only store the characters available in that code page. Characters
that are not present in the code page, cannot be represented by that string. The UTF-8 unicode
encoding is an encoding that can be used with single-byte strings: The ASCII characters (ordinal
value <128) in this encoding map exactly to the CP_ACP encoding. This fact is used to define a
single byte string type that can contain all characters:

Type
UTF8String = type AnsiString (CP_UTFS8) ;

The UTF8string string type can be used to represent all Unicode characters. This power comes as
a price, though. Since a unicode character may require several bytes to be represented in the UTF-8
encoding, there are 2 points to take care of when using UTF8String:

1. The character index — which retrieves a byte-sized char at a certain position — must be used
with care: the expression S [1] will not necessarily be a valid character for a string S of type
UTF8String.

2. The byte length of the string is not equal to the number of characters in the string. The standard
function length cannot be used to get the character length, it will always return the byte
length.

For all other code pages, the number of characters in a single-byte code page string is equal to the

byte length of the string.

3.2.5 Multi-byte String types

For multi-byte string types, the basic character has a size of at least 2. This means it can be used to
store a unicode character in UTF16 or UCS2 encoding.

34

CHAPTER 3. TYPES

UnicodeStrings

Unicodestrings (used to represent unicode character strings) are implemented in much the same way
as ansistrings: reference counted, null-terminated arrays, only they are implemented as arrays of
WideChars instead of regular Chars. A WideChar is a two-byte character (an element of a
DBCS: Double Byte Character Set). Mostly the same rules apply for UnicodeStrings as for
AnsiStrings. The compiler transparently converts UnicodeStrings to AnsiStrings and vice versa.

Similarly to the typecast of an Ansistring to a PChar null-terminated array of characters, a Uni-
codeString can be converted to a PUnicodeChar null-terminated array of characters. Note that
the PUnicodeChar array is terminated by 2 null bytes instead of 1, so a typecast to a pchar is not
automatic.

The compiler itself provides no support for any conversion from Unicode to ansistrings or vice versa.
The system unit has a unicodestring manager record, which can be initialized with some OS-specific
unicode handling routines. For more information, see the system unit reference.

A unicode string literal can be constructed in a similar manner as a widechar:

Const
ws2: unicodestring = ’‘phi omega : ’'#S$03A8’ ’#S$03A9;

WideStrings

Widestrings (used to represent unicode character strings in COM applications) are implemented in
much the same way as unicodestrings. Unlike the latter, they are not reference counted, and on
Windows, they are allocated with a special windows function which allows them to be used for OLE
automation. This means they are implemented as null-terminated arrays of WideChars instead of
regular Chars. Mostly the same rules apply for WideStrings as for AnsiStrings. Similar to
unicodestrings, the compiler transparenty converts WideStrings to AnsiStrings and vice versa.

For typecasting and conversion, the same rules apply as for the unicodestring type.

3.2.6 Constant strings

To specify a constant string, it must be enclosed in single-quotes, just as a Char type, only now more
than one character is allowed. Given that S is of type St ring, the following are valid assignments:

"This is a string.’;

:= "One’+’", Two’+’, Three’;

"This isn’’t difficult !’;

:= 'This is a weird character : ’#145" !’;

N n n n
Il

As can be seen, the single quote character is represented by 2 single-quote characters next to each
other. Strange characters can be specified by their character value (usually an ASCII code). The
example shows also that two strings can be added. The resulting string is just the concatenation
of the first with the second string, without spaces in between them. Strings can not be subtracted,
however.

Whether the constant string is stored as an ansistring or a short string depends on the settings of the
{SH} switch.

35

CHAPTER 3. TYPES

3.2.7 PChar - Null terminated strings

Free Pascal supports the Delphi implementation of the PChar type. PChar is defined as a pointer to
a Char type, but allows additional operations. The PChar type can be understood best as the Pascal
equivalent of a C-style null-terminated string, i.e. a variable of type PChar is a pointer that points
to an array of type Char, which is ended by a null-character (#0). Free Pascal supports initializing
of PChar typed constants, or a direct assignment. For example, the following pieces of code are
equivalent:

program one;
var P : PChar;

begin
P := 'This is a null-terminated string.’;
WriteLn (P);

end.

Results in the same as

program two;

const P : PChar = 'This is a null-terminated string.’;
begin

WriteLn (P);
end.

These examples also show that it is possible to write the contents of the string to a file of type
Text. The strings unit contains procedures and functions that manipulate the PChar type as in the
standard C library. Since it is equivalent to a pointer to a type Char variable, it is also possible to do
the following:

Program three;
Var S : String[30];

P : PChar;
begin
S := "This is a null-terminated string.’#0;
P := @S[1];
WriteLn (P);
end.

This will have the same result as the previous two examples. Null-terminated strings cannot be added
as normal Pascal strings. If two PChar strings must be concatenated; the functions from the unit
strings must be used.

However, it is possible to do some pointer arithmetic. The operators + and — can be used to do
operations on PChar pointers. In table (3.5), P and Q are of type PChar, and I is of type Longint.

Table 3.5: PChar pointer arithmetic

Operation Result
P+ I Adds T to the address pointed to by P.
I +P Adds T to the address pointed to by P.
P -1 Substracts I from the address pointed to by P.
P -0 Returns, as an integer, the distance between 2 addresses

(or the number of characters between P and Q)

36

../rtl/strings/index.html
../rtl/strings/index.html

CHAPTER 3. TYPES

3.2.8 String sizes

The memory occupied by a string depends on the string type. Some string types allocate the string
data in memory on the heap, others have the string data on the stack. Table table (3.6) summarizes the
memory usage of the various string types for the various string types. In the table, Headersize de-
pends on the version of Free Pascal, but is 16 bytes as of Free Pascal 2.7.1. The WideHeaderSize
size is 8 bytes for all versions of Free Pascal. L is the actual length of the string.

Table 3.6: String memory sizes

String type Stack size heap size

Shortstring Declared length +2 0

Ansistring Pointer size L + 1 + HeaderSize
Widestring Pointer size 2*(L + 1) + WideHeaderSize
UnicodeString Pointer size 2*(L + 1) + WideHeaderSize
Pchar Pointer size L+1

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Structured types can be
nested to unlimited levels.

Structured Types
=— structured type — array type >
—— record type ———
—— object type
class type —

- class reference type —
—— interface type ——
set type —
file type —

Unlike Delphi, Free Pascal does not support the keyword Packed for all structured types. In the
following sections each of the possible structured types is discussed. It will be mentioned when a
type supports the packed keyword.

Packed structured types

When a structured type is declared, no assumptions should be made about the internal position of the
elements in the type. The compiler will lay out the elements of the structure in memory as it thinks
will be most suitable. That is, the order of the elements will be kept, but the location of the elements
are not guaranteed, and is partially governed by the SPACKRECORDS directive (this directive is
explained in the Programmer’s Guide).

However, Free Pascal allows controlling the layout with the Packed and Bitpacked keywords.
The meaning of these words depends on the context:

Bitpacked In this case, the compiler will attempt to align ordinal types on bit boundaries, as ex-
plained below.

37

../prog/prog.html

CHAPTER 3. TYPES

Packed The meaning of the Packed keyword depends on the situation:

1. In MACPAS mode, it is equivalent to the Bitpacked keyword.

2. In other modes, with the SBITPACKING directive set to ON, it is also equivalent to the
Bitpacked keyword.

3. In other modes, with the SBITPACKING directive set to OFF, it signifies normal packing
on byte boundaries.

Packing on byte boundaries means that each new element of a structured type starts on a byte
boundary.

The byte packing mechanism is simple: the compiler aligns each element of the structure on the first
available byte boundary, even if the size of the previous element (small enumerated types, subrange
types) is less than a byte.

When using the bit packing mechanism, the compiler calculates for each ordinal type how many bits
are needed to store it. The next ordinal type is then stored on the next free bit. Non-ordinal types
- which include but are not limited to - sets, floats, strings, (bitpacked) records, (bitpacked) arrays,
pointers, classes, objects, and procedural variables, are stored on the first available byte boundary.

Note that the internals of the bitpacking are opaque: they can change at any time in the future. What
is more: the internal packing depends on the endianness of the platform for which the compilation is
done, and no conversion between platforms are possible. This makes bitpacked structures unsuitable
for storing on disk or transport over networks. The format is however the same as the one used by
the GNU Pascal Compiler, and the Free Pascal team aims to retain this compatibility in the future.

There are some more restrictions to elements of bitpacked structures:
e The address cannot be retrieved, unless the bit size is a multiple of 8 and the element happens
to be stored on a byte boundary.
e An element of a bitpacked structure cannot be used as a var parameter, unless the bit size is a

multiple of 8 and the element happens to be stored on a byte boundary.

To determine the size of an element in a bitpacked structure, there is the BitSizeOf function. It
returns the size - in bits - of the element. For other types or elements of structures which are not
bitpacked, this wi