next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                        2 2    2        2       2 2        2   2       2 2 2
o2 = ideal (d*m*o - a, d r  - f g, c*d*f  - a, c j x - v, b o*t  - k, i n t 
     ------------------------------------------------------------------------
           2 2 2    2
     - a, f g p  - r )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3   4 4       2 4 3 3   4 3 4 4          4 3 4     3 3 3 2 3  
o3 = ideal (a d*h o q*s - g r u x , i j q u  - f*g*l*s t x , c*d q r t u  -
     ------------------------------------------------------------------------
      3 4 4 3   2 4 3 2 2 2 3      3
     g l m v , d g o p q s x  - b*i w)

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.