Go to the documentation of this file.
37 #include "vtkCommonDataModelModule.h"
77 int& subId,
double pcoords[3],
78 double& dist2,
double weights[])
override;
80 double *weights)
override;
81 int IntersectWithLine(
const double p1[3],
const double p2[3],
double tol,
double& t,
82 double x[3],
double pcoords[3],
int& subId)
override;
84 void Derivatives(
int subId,
const double pcoords[3],
const double *values,
85 int dim,
double *derivs)
override;
91 static void InterpolationDerivs(
const double pcoords[3],
double derivs[24]);
112 static void InterpolationFunctions(
const double pcoords[3],
double weights[8]);
121 static int* GetTriangleCases(
int caseId);
138 void operator=(
const vtkVoxel&) =
delete;
represent and manipulate 3D points
virtual int IntersectWithLine(const double p1[3], const double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId)=0
Intersect with a ray.
static void InterpolationFunctions(const double pcoords[3], double weights[8])
Compute the interpolation functions.
void InterpolateDerivs(const double pcoords[3], double derivs[24]) override
represent and manipulate point attribute data
static vtkObject * New()
Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
int GetNumberOfEdges() override
Return the number of edges in the cell.
abstract superclass for arrays of numeric data
virtual void EvaluateLocation(int &subId, const double pcoords[3], double x[3], double *weights)=0
Determine global coordinate (x[3]) from subId and parametric coordinates.
int GetNumberOfFaces() override
Return the number of faces in the cell.
cell represents a 1D line
abstract class to specify 3D cell interface
#define VTK_SIZEHINT(...)
virtual int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts)=0
Generate simplices of proper dimension.
abstract class to specify cell behavior
represent and manipulate cell attribute data
virtual vtkCell * GetFace(int faceId)=0
Return the face cell from the faceId of the cell.
a simple class to control print indentation
object to represent cell connectivity
Abstract class in support of both point location and point insertion.
list of point or cell ids
void InterpolateFunctions(const double pcoords[3], double weights[8]) override
Compute the interpolation functions/derivatives (aka shape functions/derivatives)
void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override
Generate contouring primitives.
void PrintSelf(ostream &os, vtkIndent indent) override
Methods invoked by print to print information about the object including superclasses.
virtual void GetEdgePoints(int edgeId, int *&pts)=0
Get the pair of vertices that define an edge.
virtual int CellBoundary(int subId, const double pcoords[3], vtkIdList *pts)=0
Given parametric coordinates of a point, return the closest cell boundary, and whether the point is i...
virtual int EvaluatePosition(const double x[3], double closestPoint[3], int &subId, double pcoords[3], double &dist2, double weights[])=0
Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; ev...
virtual double * GetParametricCoords())
Return a contiguous array of parametric coordinates of the points defining this cell.
a cell that represents an orthogonal quadrilateral
virtual vtkCell * GetEdge(int edgeId)=0
Return the edge cell from the edgeId of the cell.
int GetCellType() override
See the vtkCell API for descriptions of these methods.
virtual void Derivatives(int subId, const double pcoords[3], const double *values, int dim, double *derivs)=0
Compute derivatives given cell subId and parametric coordinates.
virtual void GetFacePoints(int faceId, int *&pts)=0
Get the list of vertices that define a face.
static void InterpolationDerivs(const double pcoords[3], double derivs[24])
int GetCellDimension() override
The topological dimension of the cell.
a cell that represents a 3D orthogonal parallelepiped