
HD Photo
Photographic Still Image File Format

This file format is an evolution of HD Photo, also
known under the name Windows Media™ Photo

Device Porting Kit Specification

Copyright © 2013 Microsoft Corporation. All rights reserved. Any use, distribution or public

discussion of, and any feedback related to these materials are subject to the terms of the

attached license.

Windows Media™ is a registered trademark of Microsoft Corporation. All rights reserved.

Version 1.0

Status Release

Version 1.0 5.3.2013

JPEG XR Device Porting Kit Specification

Microsoft Corporation Technical Documentation License Agreement for the specification “JPEG XR Device
Porting Kit”

Copyright © 2013 Microsoft Corp.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THEIMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSEARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BELIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, ORCONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OFSUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESSINTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
INCONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF SUCH
DAMAGE..

Version 1.0 5.3.2013

i

JPEG XR Device Porting Kit Specification

Contents
Contents... ii

Preface...iii

Chapter 1. OVERVIEW..1
1.1 Format Identification..1
1.2 Documentation...1
1.3 Device Porting Kit Contents...2

Chapter 2. Sample Applications...3
2.1 Introduction..3
2.2 JXREncApp Parameter Overview...4
2.3 Standard Uncompressed File Formats..5
2.4 Fixed Point Pixel Formats...7
2.5 Unsupported Pixel Formats..7
2.6 Compression Choices: -q, -d & -l Options...7

2.6.1 -q Image Quality (0.0 – 1.0) or Quantization (1-255)..7
2.6.2 -d Chroma Sub-sampling (0, 1, 2 or 3)...8
2.6.3 -l Overlap Processing (0, 1, 2)...9

2.7 Image Organization Choices: -f, -U, -V, -H & -a Options..9
2.7.1 -a Alpha Channel Structure...9
2.7.2 -Q Planar Alpha Quantization (1-255)..10
2.7.3 -f Frequency Order vs. Spatial Order...10
2.7.4 -p Progressive Mode..10

2.8 Image Tiling: -U, -V, -H..10
2.9 Encoder Status Reporting: -v, -t..11

2.9.1 -v Verbose mode..11
2.9.2 -t Timing information...11

2.10 JXRDecApp Command Line Decoder...12

Chapter 3. Additional Utilities...14
3.1 ImageComp..14
3.2 HDR2HDR..14

Chapter 4. Encoder and Decoder Internal Interfaces and Data Structures....................15
4.1 ImageInfo Structure...15
4.2 cfColorFormat and bdDepth Combinations..16
4.3 Encoder cfColorFormat and Decoder cfColorFormat Combinations..17
4.4 CodecParam Structure...18
4.5 External cfColorFormat and Internal cfColorFormat Combinations...19
4.6 ImageBufInfo Structure...20

Version 1.0 5.3.2013

ii

JPEG XR Device Porting Kit Specification iii

Preface

About This Specification

JPEG XR is a file format and associated codec specifically designed to for use with all types of continuous

tone photographic content. This document describes the contents of the JPEG XR Device Porting Kit 1.0,
including various technical details about the software components provided that enable the basic encoder
and decoder reference source code to be access via a basic set of programmatic interfaces or by using the
included sample command line applications.

The information contained in this specification is subject to change. Every effort has been made to ensure
accuracy at the time of publication.

Formatting Conventions

This specification uses the following formatting conventions:

Terms are formatted like this .

Important comments, typically highlighting unimplemented or preliminary features look like this.

Code looks like this.

Raw text and editorial notes look like this.

Language Notes

In this specification, the words that are used to define the significance of each particular requirement are
capitalized. These words are used in accordance with their definitions in RFC 2119 and their meaning is
reproduced here for convenience:

 MUST. This word, or the adjective “REQUIRED,” means that the item is an absolute requirement of

the specification.

 SHOULD. This word, or the adjective “RECOMMENDED,” means that there may exist valid reasons

in particular circumstances to ignore this item, but the full implications should be understood and
the case carefully weighed before choosing a different course.

 MAY. This word, or the adjective “OPTIONAL,” means that this item is truly optional. For example,

one implementation may choose to include the item because a particular marketplace or scenario
requires it or because it enhances the product. Another implementation may omit the same item.

Version 1.0 5.3.2013

Chapter .1 OVERVIEW

.1.1 Format Identification

This device porting kit (DPK) supports the JPEG XR still image format, based on technology originally
developed by Mirosoft under the name HD Photo (formerly Windows Media™ Photo). The JPEG XR format is
similar, but not identical, to the HD Photo/Windows Media™ Photo format.

The JPEG XR format replaces the HD Photo/Windows Media™ Photo format in both Windows 8 and the
Windows Image Component (WIC). WIC accompanies the Internet Explorer 10 redistributable packages for
down-level versions of Windows. Some Windows Media™ Photo (WMP) naming conventions are still used
internally with this release of the DPK.

JPEG XR files use the .jxr extension. Applications that support the JPEG XR file format should recognize and
decode HD Photo/Windows Media™ Photo .hdp/.wdp files, but only offer to create files with the .jxr
extension.

.1.2 Documentation

This document provides supplemental information about the JPEG XR Device Porting Kit (DPK) not covered
in the other specifications. This includes documentation on the command line encoder and decoder
utilities that are provided here as sample reference source code and additional technical details about the
application program interfaces (API’s) and data types and structures used to interface the core encoder
and decoder modules with the command line utility application code.

The “JPEG XR Image Coding Specification” document contains complete technical details on the encoder
and decoder compression algorithms and the compressed data (elementary) bitstream format. “Annex A”
of the document contains information about the JPEG XR file container format and metadata tags. The
specification is an international standard and is available at:

http://www.itu.int/rec/T-REC-T.832

The “JPEG XR System Architecture” document contains a technical overview the encoder and decoder
compression algorithms and the compressed data (elementary) bitstream format, as well as guidelines for
JPEG XR application developers. It is available at:

http://www.itu.int/rec/T-REC-T.Sup2-201103-I

http://www.itu.int/rec/T-REC-T.Sup2-201103-I
http://www.itu.int/rec/T-REC-T.832

.1.3 Device Porting Kit Contents

The complete contents of this Device Porting Kit are as follows:

Directory File Description
bin\ hdr2hdr.exe Unsupported utility programs

imagecomp.exe
common\include\ guiddef.h Shared header files

wmsal.h
wmspecstring.h
wmspecstrings_adt.h
wmspecstrings_strict.h

doc\ readme.txt JPEG XR Device Porting Kit
documentation files (including
this document.)

JPEGXR_Feature_Spec_1.0.doc
JPEGXR_DPK_Spec_1.0.doc

image\decode\ decode.c ANSI C reference source code
for the JPEG XR decoderdecode.h

huffman.c
postprocess.c
segdec.c
strdec.c
strInvTransform.c
strPredQuantDec.c
JXRTranscode.c

image\encode\ encode.c ANSI C reference source code
for the JPEG XR encoderencode.h

segenc.c
strenc.c
strFwdTransform.c
strPredQuantEnc.c

image\sys\ adapthuff.c ANSI C reference source code
and additional functions used
for development and testing
that are shared by both the
encoder and the decoder

ansi.h
common.h
image.c
perfTimer.h
perfTimerANSI.c
perfTimerWin32.c
strcodec.c
strcodec.h
strPredQuant.c
strTransform.c
strTransform.h
windowsmediaphoto.h

Directory File Description
image\VC10Projects\
image\VC11Projects\

CommonLib.vcxproj Project files to build the
various device porting kit
componentsDecodeLib.vcxproj

EncodeLib.vcxproj
image\x86\ strenc_x86.c X86 specific support code,

not directly related to the
encoder or decoderx86.h

JXREncoderDecoder\ JXRDecApp.c Source code and project files
for the sample command line
encoder and decoder apps

JXREncApp.c
JXR.sln
JXRDecApp.vcxproj
JXREncApp.vcxproj

JXRGlueLib\ JXRGlue.c Source code and project files
to provide JPEG XR ifile and
metadata handling

JXRGlue.h
JXRMeta.c
JXRMeta.h
JXRGluePFC.c
JXRGlueJxr.c
JXRGlueLib.vcxproj

JXRTestLib\ JXRTest.c Sample source code and
project files to provide
minimal image file format
handling as required by the
sample command line
applications.

JXRTest.h
JXRTestBmp.c
JXRTestHdr.c
JXRTestPnm.c
JXRTestTif.c
JXRTestYUV.c
JXRTestLib.vcxproj

.\ Makefile Example make file to build
the DPK components on a
Unix/Linux system, including
support for big-endian
hardware architecture

Chapter .2 Sample Applications

.2.1 Introduction

This device porting kit includes the source code for command line utilities to convert files between JPEG XR
format and other common, uncompressed file formats. These utilities are provided as example
applications for calling the JPEG XR encoder and decoder. This section documents the usage of these
utilities, including a complete explanation of the command line parameters. These are not full-featured file
conversion applications. While they are useful development tools, they are provided only as sample
applications for exercising the JPEG XR encoder and decoder.

.2.2 JXREncApp Parameter Overview

This command line utility converts certain uncompressed file formats into equivalent JPEG XR files. It
provides a complete set of command line options to control all supported JPEG XR Encoder options. Here is
a summary of the usage of JXREncApp and the various command line options. All of these options will be
discussed in detail in later sections.

jxrencapp [options]...

 -i input.bmp/tif/hdr Input image file name
 bmp: <=8bpc, BGR
 tif: >=8bpc, RGB

 hdr: 24bppRGBE only
 -o output.jxr Output JPEG XR file name
 -q quality [0.0 - 1.0) Default = 1.0, lossless
 or quantization [1 - 255] Default = 1, lossless
 -c format Required to define uncompressed
 source pixel format
 0: 24bppBGR
 1: BlackWhite
 2: 8bppGray
 3: 16bppGray
 4: 16bppGrayFixedPoint
 5: 16bppGrayHalf
 7: 32bppGrayFixedPoint
 8: 32bppGrayFloat
 9: 24bppRGB
 10: 48bppRGB
 11: 48bppRGBFixedPoint
 12: 48bppRGBHalf
 14: 96bppRGBFixedPoint
 15: 128bppRGBFloat
 16: 32bppRGBE
 17: 32bppCMYK
 18: 64bppCMYK
 22: 32bppBGRA
 23: 64bppRGBA
 24: 64bppRGBAFixedPoint
 25: 64bppRGBAHalf
 27: 128bppRGBAFixedPoint
 28: 128bppRGBAFloat
 29: 16bppBGR555
 30: 16bppBGR565
 31: 32bppBGR101010
 32: 40bppCMYKA
 33: 80bppCMYKA
 34: 32bppBGR

 -d chroma sub-sampling 0: Y-only
 1: YCoCg 4:2:0
 2: YCoCg 4:2:2
 3: YCoCg 4:4:4 (default)

 -l overlapping 0: No overlapping
 1: One level overlapping (default)
 2: Two level overlapping

 -f Turn off frequency order bit stream
 (to spatial)

 -p Turn off progressive mode
 (to sequential)

 -t Display timing information

 -v Display verbose encoder information

 -V tile_wd0 [tile_wd1 ...] Macro block columns per tile
 -H tile_ht0 [tile_ht1 ...] Macro block rows per tile
 -U num_v_tiles num_h_tiles Vertical & horizontal tile count for
 uniform tiling

 -b Black/White Applies to 1bpp black/white images
 0: 0 = black (default)
 1: 0 = white

 -a alpha channel format Required for any pixel format
 with an alpha channel
 2: Planar alpha
 3: Interleaved alpha
 Other: Reserved, do not use

 -Q quantization for alpha [1 - 255] Default = 1, lossless

 -F trimmed flexbits [0 – 15] 0: no trimming (default)
 15: trim all

 -s skip subbands 0: All subbands included (default)
 1: Skip flexbits
 2: Skip highpass
 3: Skip highpass & lowpass (DC only)

So for example to create a JPEG XR file from a typical 24-bit .bmp using reasonably high quality lossy
compression, the command line would be:

jxrencapp -i input.bmp -o output.jxr -q 10

This scenario uses the default settings for most of the encoder options. Obviously, we’d like to take full
control of these options to choose exactly how the JPEG XR file is created. The following sections describe
these options in detail.

.2.3 Standard Uncompressed File Formats

The DPK Tools are certainly not general purpose file format conversion utilities. They provide the absolute
minimum support for uncompressed source and destination file formats; the specific file formats supported
are TIFF, BMP and HDR. Only certain variations of these formats are supported and they are, for the most
part, tied to the pixel format being converted to or from. The DPK Tools do not perform any pixel format
conversion. Therefore the source uncompressed image must be in the desired pixel format for the
encoded JPEG XR file. Only minimal data validation is performed; if the source pixel format is incorrect,
you will most likely create a bad JPEG XR file.

Here are the uncompressed source file formats supported by the DPK Tools, and the specifics for each pixel
format supported. Each of the file formats and specific image formats listed below correspond to a mode
that can be created using Adobe PhotoShop CS2.

TIFF The image should be flattened; it should not contain any layers. If it does contain layers, the
“Discard Layers and Save a Copy” option should be selected under Layer Compression. Image
Compression must be set to “None”; any compressed TIFF format will cause an error or convert to
a bad JPEG XR file. TIFF images must always be stored in “Interleaved” pixel order; “Per Channel”
pixel order is not supported. Byte order should be set to “IBM PC.” “Save Image Pyramid” should
be unchecked.

The specific pixel format created depends on the correct combination of Image Mode in
PhotoShop, the specific TIFF save options specified, and the encoder pixel format option specified
for JXREncApp.exe. The following table lists all the possible combinations

PhotoShop
Mode

Bit Depth Encodes as -c Notes

RGB/8 24bppRGB 9

RGB/16 48bppRGB 10

RGB/16 w/ alpha 64bppRGBA 23

RGB/32 16 bit (Half) 48bppRGBHalf 12

RGB/32 w/ alpha 16 bit (Half) 64bppRGBAHalf 25

RGB/32 w/ alpha 32 bit (Float) 128bppRGBFloat 15 Fill alpha black

RGB/32 w/ alpha 32 bit (Float) 128bppRGBAFloat 28

CMYK/8 32bppCMYK 17

CMYK/8 w/ alpha 40bppCMYKA 32

CMYK/16 64bppCMYK 18

CMYK/16 w/ alpha 80bppCMYKA 33

Gray/8 8bppGray 2

Gray/16 16bppGray 3

Gray/32 16 bit (Half) 16bppGrayHalf 5

Gray/32 32 bit (Float) 32bppGrayFloat 8

Bitmap 1bppBlackWhite 1

For 1bppBlackWhite encoding, the –b option allows you to specify how interpret black vs. white
values. When encoding from TIFF files, the default will generate the correct results and this
option should not be required.

BMP This file format is only used for 8 bit per channel (bpc) or smaller bit depths. It differs from the
equivalent TIFF format because RGB data is stored in the uncompressed bit stream in BGR rather
than RGB channel order. When creating the uncompressed image in PhotoShop, only RGB/8 mode
should be used. Under BMP Options, the File Format should always be set to “Windows”.
“Compress (RLE)” and “Flip row order” should never be checked. The Basic or Advanced Modes
under the BMP Save options should be set in combination with the appropriate encoder options to
achieve the desired pixel format according to the following table.

PhotoShop
Mode

BMP Options Encodes as -c Notes

RGB/8 Basic: 24 bit 24bppBGR 0

RGB/8 w/ alpha Basic: 32 bit 32bppBGR 34 Fill alpha black

RGB/8 w/ alpha Basic: 32 bit 32bppBGRA 22

RGB/8 Adv: X1 R5 G5 B5 16bppBGR555 29

RGB/8 Adv: R5 G6 B5 16bppBGR565 30

HDR This file format is only used for encoding to the JPEG XR 24bppRGBE pixel format. This special
floating point pixel format uses a shared exponent and three independent mantissas to encode
the entire pixel. Unfortunately, while PhotoShop CS 2 supports saving in .HDR file mode, it only
saves using the compressed option. JXREncApp.exe only supports uncompressed .HDR files. So,
we’ve provided a simple command line utility called HDR2HDR that only does one thing: It reads
and decompresses a compressed .HDR file and saves it as an uncompressed .HDR file.
HDR2HDR.EXE is included in the DPK.

PhotoShop
Mode PhotoShop Save

As…
Encodes
as

-c

RGB/32 Radiance (*.HDR) 24bppRGBE 16

.2.4 Fixed Point Pixel Formats

The one significant omission from the pixel formats listed in the tables above is the set of fixed point
formats. The fixed point pixel formats provide an excellent solution for retaining the full content of an
image source while still providing efficient storage and processing.

These fixed point formats are one of the innovations introduced with JPEG XR (and previously HD
Photo/Windows Media™). No other file format supports fixed point encoding. Because JXREncApp.exe has
no built-in capability for pixel format conversion, there is no way we can encode fixed point JPEG XR files
from standard TIFF or BMP files.

In reality, if we write a little software, we could convert floating point image data to fixed point and still
store it in a TIFF file. While the resulting TIFF file containing fixed point image data would not display
correctly, it could be converted to a fixed point JPEG XR file using JXREncApp.exe. That’s why there are –c
option values defined for the various fixed point pixel formats. But for this to work, its your responsibility
to first convert the uncompressed image data to fixed point.

.2.5 Unsupported Pixel Formats

There are several other pixel formats that can’t easily be encoded using JXREncApp.exe

It is possible to encode images in any of the pre-multiplied alpha pixel formats, but the uncompressed
image will have to first be pre-processed to multiply the RGB channels by the alpha channel value. This
can be done using the appropriate blending operations in Photoshop. Like fixed point pixel formats, a TIFF
file in a pre-multiplied pixel format will not display correctly, but can be converted to an equivalent JPEG XR
file using JXREncApp.exe.

While JXREncApp.exe includes a –c option value for 32bpcRGB101010 pixel format, there is no way to
create this pixel format in an uncompressed file using PhotoShop. You can write your own code to create
this pixel format within a TIFF file. While JXREncApp.exe will be able to convert this to an JPEG XR file, the
TIFF file you create will not display correctly in any other application.

JXREncApp.exe does not support encoding any of the n-Channel pixel formats.

.2.6 Compression Choices: -q, -d & -l Options

There are three parameters that control the tradeoffs between image quality and compressed file size. In
addition to their individual effect, it’s also important to understand how these three parameters interact
with each other.

.2.6.1 -q Image Quality (0.0 – 1.0) or Quantization (1-255)

One of the principal ways lossy compression is achieved is to “quantize” a set of continuous values into a
smaller set of representative values. In this way, “loss” is achieved by mapping values that are close
together to the same value. Only the remaining set of values needs to be coded and saved, reducing the
amount of storage required. The greater the degree of quantization, the more the content can be
compressed, but in doing so, more of the small differences among similar values are lost.

The quantization level, specified by the –q option basically defines the amount of similarity that can be
discarded. It is an arbitrary range from 1-255; the quantization value does not correspond directly to any
specific difference amount. Quantization determines the desired image quality rather than the desired
compression ratio. The actual compression ratio is a function of both the quantization and the image
content; images with less complex content will have fewer differences among values and will achieve
better compression without the need for greater quantization. Additionally, the quantization is also highly
dependent on the specific pixel format, most importantly the bit depth. Higher values will be required to
greater bit depths to achieve a comparable compression ratio, since larger bit depths provide a greater
range of possible values and therefore will need more quantization.

JPEG XR provides the unique capability of preserving all data values during quantization, effectively
providing mathematically lossless compression. When the quantization is set to 1, no values are discarded
and all encoded pixel values will be returned with absolutely no loss. This is the default setting if no value
for the –q option is specified.

To let JXREncApp.exe set the quantization level automatically, use the same –q flag to set the image
quality from 0.0 (lowest) to 1.0 (lossless). JXREncApp.exe will map the single 0.0 – 1.0 quality parameter
into several JPEG XR quantization levels.

.2.6.2 -d Chroma Sub-sampling (0, 1, 2 or 3)

We can choose to reduce the resolution of the chrominance of an image prior to the quantization process.
Reducing the chrominance resolution, or chroma sub-sampling, has long been understood as an effective
way to reduce image content with very little perceptible degradation. In fact, virtually all television or
video you watch, whether analog or digital, takes advantage of chroma sub-sampling to reduce the
required bandwidth. The JPEG compression format always uses chroma sub-sampling as well. In fact, the
unique capability of JPEG XR is not that we provide chroma sub-sampling, but that we provide a
mechanism for you to reduce or eliminate this technique to improve image quality. Of course, this only
applies to RGB color images.

An image is first reorganized from RGB into a channel for luminance and two channels to describe the color
information (or chrominance.) If all chrominance is discarded, what’s left is a monochrome image.
Typically, we don’t want to go that far!

Many video systems, as well as the JPEG compression format (or at least the most common variant of it
that we all use) discards 75% of the chrominance information. The resolution of the color information is
reduced by a factor of two in both dimensions. So every four pixels in an image are represented by four
luminance values but only two (one for each chroma channel) chrominance values. What started out as 12
values (four pixels with three channels each) has been cut in half; only 6 values (four luminance values
and two chrominance values) have to be saved.

In the world of digital imaging, this is referred to as 4:2:0 chroma sub-sampling, or more simply as 4:2:0.
When all chrominance information is retained (no values are discarded), this is referred to as 4:4:4.
Another popular approach, particularly for professional video applications, is to only discard 50% of the

chroma values; two values for each chroma channel, or four values in total are retained. This is referred to
as 4:2:2. Finally, if we discard all color information, retaining only the luminance, this is described as 4:0:0.
JPEG XR supports all these modes.

-c 3 (4:4:4) All color information is retained, assuring full resolution of the chrominance information. This
is the default and is the recommended setting to achieve the best overall image quality.
Whenever an image is stored as an intermediate format and further editing is anticipated, it
is highly recommended to use 4:4:4.

-c 2 (4:2:2) The color information is encoded at ½ the resolution of the luminance information. Four each
set of four pixels, four luminance values are used and the eight chrominance values are
reduced down to four (two for each chroma channel.) This provides perceptively lossless color
encoding for the final delivery of an image. However, if further editing of the image is
anticipated, it’s recommended than any chroma sub-sampling be avoided.

-c 1 (4:2:0) The color information is encoded at ¼ the resolution of the luminance information. Four each
set of four pixels, four luminance values are used and the eight chrominance values are
reduced down to two (one for each chroma channel.) This is the same sub-sampling used by
JPEG. When converting a JPEG file to JPEG XR, there is no need to specify a higher chroma
sub-sampling mode than 4:2:0.

-c 0 (4:0:0) All color information is discarded and only the luminance information is retained, effectively
creating a monochrome image. For performance reasons, JPEG XR uses a non-traditional
method to calculate luminance. Therefore, the resulting monochrome image will not appear
identical to a monochrome version of the image created using other tools. Additionally,
although all color information is discarded, the pixel format is not changed, so the image is
still stored using an RGB pixel format. It is strongly recommended that if you want to create
a monochrome image, the image should first be converted to monochrome using an
appropriate image editing application to achieve the desired result, and then this
monochrome image should be encoded using the appropriate Gray pixel format.

.2.6.3 -l Overlap Processing (0, 1, 2)

JPEG XR uses an advanced version of a macro-block based compression scheme. To achieve the best
performance and minimize the amount of memory required to encode or decode an image, the overall
image is subdivided into a set of 16x16 pixel macro blocks. Each macro block is are further divided into
four 4x4 pixel blocks. All image encoding and decoding operations are peformed on these blocks and
macro-blocks. As a result, for high quantization values (when we are discarding a higher amount of similar
pixel values), the steps between blocks and macro blocks may become visible as artifacts in the
compressed image. This is very common with JPEG (which also uses macro blocks) and significantly
reduces the amount of compression that can be used without creating these visible artifacts.

JPEG XR addresses this problem through a combination of better quantization and an additional step of
overlap processing. This overlap processing takes into account the values of pixels in neighboring blocks
and macro blocks when choosing the quantization values that represent similar adjacent pixels. By doing
so, the visible differences among adjacent blocks and macro blocks are dramatically reduced.

Two levels of optional overlap processing can be specified via the –l parameter. Single level overlap
processing (-I 1) is performed at the 4x4 block level. For all pixels in the block, bordering pixels in adjacent
blocks are also evaluated when choosing the quantization values for that block. Double level overlap
processing (-l 2) also analyzes neighboring adjacent pixels when choosing quantization values at the 16x16
macro-block level.

The default value for the –l parameter is 1 and single level overlap processing should be used for most
typical encoding scenarios. For very high quantization levels, double-level overlap processing may be
appropriate, but this will trade off the potential for macro block artifacts for a loss of image detail. Setting
the –l parameter to 0 suppresses any overlap processing. This can speed performance, but is only
recommended for very low quantization values. Specific quantization thresholds for choosing the

appropriate level of overlap processing are highly dependent on the image content and cannot be
predicted. Trial and error will be your best guide. But when in doubt, stick with the default.

.2.7 Image Organization Choices: -f, -U, -V, -H & -a Options

In addition to controlling the quality vs. the size of the image, JPEG XR provides a number of choices on
exactly how the image information is structured or organized within the file. This includes the alpha
channel structure, image tiling, and the overall data order of frequency vs. spatial.

.2.7.1 -a Alpha Channel Structure

Obviously, this option only applies to images with alpha channels. The –a option is required for any
uncompressed source image that contains an alpha channel and it will be ignored if the image does not
include an alpha channel.

JPEG XR supports both interleaved and planar alpha channels. An interleaved alpha channel is stored in
sequence with the channels that describe the image contents (RGB or CMYK). It simply adds an additional
channel to each pixel. A planar alpha channel is stored as a completely separate image within the JPEG XR
file container. The alpha channel is encoded separately from the image RGB or CMYK data. The decoder
can decode both and re-interleave the channels to deliver a bitmap with alpha channel. Or if only one
element (the image content or the alpha channel) is required, a decoder can return just that portion with
no need for all the additional processing required for the other portion.

Setting the –a parameter to 3 specifies that the image be encoded with an interleaved alpha channel.
Conversely, setting this option to 2 will encode an image with a planar alpha channel. Any other value is
illegal and will generate an error.

The default value is 2, and the parameter is only meaningful when encoding an image with alpha.

.2.7.2 -Q Planar Alpha Quantization (1-255)

This option set the quantization level for the planar alpha image, and the values are interpreted the same
as the Image Quantization (-q) parameter. If ommited, it is set to 1, lossless. This parameter is meaningful
when encoding either planar or interleaved alpha channels.

.2.7.3 -f Frequency Order vs. Spatial Order

JPEG XR makes it possible to organize the compressed image data sequentially in either spatial or
frequency order. Spatial order is the typical choice for encoding by a device. The sequential compressed
data stream represents the image in macro block rows starting at the upper left corner, from left to right
and from top to bottom. It allows the image to be encoded sequentially in rows of pixels, minimizing the
total memory required. Frequency order groups the data in three different frequencies and places it
sequentially in the file starting with the low frequency information, followed by the middle frequency, and
finally by the high frequency details. Frequency order makes it much more efficient to decode a low
resolution version of the image, minimizing the amount of compressed image data that must be parsed to
find the required low frequency content. When encoding on a typical personal computer, the performance
difference between encoding in frequency order vs. spatial order is insignificant.

By default the image is encoded in frequency order. This is typically preferred because of the performance
benefits when decoding the image to lower resolutions. Including the –f option will encode the image in
spatial order. This makes progressive encoding impossible (see below).

.2.7.4 -p Progressive Mode

Progressive Mode is an enhancement to frequency order under image tiling (see below). It does not affect
spatial order or non-tiled images. Progressive mode groups the data in three different frequencies over all
tiles and places it sequentially in the file starting with the low frequency information, followed by the

middle frequency, and finally by the high frequency details. Otherwise, the three different frequencies are
stored sequentially on a per-tile basis. Progressive mode makes it much more efficient to decode a low
resolution version of a tiled image, minimizing the amount of compressed image data that must be parsed
to find the required low frequency content.

By default the image is encoded in progressive mode. This is typically preferred because of the
performance benefits when decoding a tiled image to lower resolutions. Including the –p option will
encode the tiled image in sequential order.

.2.8 Image Tiling: -U, -V, -H

JPEG XR allows an image to be subdivided into individual rectangular tiles. Each tile is stored in the
compressed bit stream as a fully self-describing sub-picture. This makes it possible to decode a tile
without ever having to process the compressed data for any other tile. The main purpose for this feature is
to optimize an image for region decoding. The request to decode an arbitrary region only needs to process
the tiles that represent that region.

Both uniform tiling and non-uniform tiling are supported. With uniform tiling, all tiles (with the potential
exception of the right-most column and bottom-most row) share the same width and height. With non-
uniform tiling, the desired with and height for each tile row and column can be specified. Tiles always have
uniform height within each tile row, and uniform width within each tile column.

The –U option, followed by the column and row count, specifies uniform tiling. The image is sliced into the
requested number of columns and rows, spacing them as evenly as possible. Tiles are always a multiple of
macro blocks (16x16 pixels.) If the image width or height is not evenly divisible in macro block increments
by the requested column and row count, the right-most column and/or bottom-most row will be re-sized
accordingly. The remaining columns and rows will always be of uniform width and height. Columns cannot
be less than one macro block in width and rows cannot be less than one macro block in height. If the
requested column or row count results in tiles smaller than this, the appropriate column or row count will
be adjusted accordingly.

Instead of using the –U option for uniform tiling, the –H and –V options can be used to specify a vector of
non-uniform tile widths and heights. The vector of space-delimited values following each parameter
expresses the tile dimension in macro blocks (multiples of 16 pixels.) If insufficient values are specified to
describe the entire width or height of the image, the right-most column and/or bottom-most row will be
sized to contain the remaining pixels. If the vector of macro block sizes exceeds the dimension of the
image, the extra values in the vector will be ignored and the right-most column and/or bottom-most row
will be resized to match the remaining pixels in that image dimension.

In general, image tiling is not required. Its use, and the appropriate choice of tile size, is application
dependent. It’s recommended that to minimize the performance penalties associated with tiling, tiles
smaller than 256x256 pixels should be avoided.

.2.9 Encoder Status Reporting: -v, -t

The following are some additional encoding options that control the encoding process itself.

.2.9.1 -v Verbose mode

When present, option enables the output of extended status and results information via the STDOUT
output. This information can be piped to a file or other destination using the standard command line
conventions (> or >>) for STDOUT piping. Most of the reported information is self-explanitory.

.2.9.2 -t Timing information

When present, this option enables the output of encoder timing information via the STDOUT output. As
above, it can also be redirected. This timing information was something we included for our own testing.
It does not use a very accurate method to measure performance and while it may be informative, it should
not be relied on as an precise performance indicator. Also, please remember that the DPK Tools do not
include the platform optimization code that is implemented in the

version for Microsoft Windows.

.2.10 JXRDecApp Command Line Decoder

This sample application can convert JPEG XR files to different uncompressed file formats. This utility is
provided as sample code, and is not designed to be a full-fledged application. It only supports the specific
uncompressed file formats necessary to receive data in the various JPEG XR pixel formats. It only
processes the image data and does not attempt to transfer or convert metadata other than the tags
specifically required to define the image geometry, structure and format. It has only minimal error
checking or resiliency to bad source data or incorrect parameters.

jxrdecapp [options]...

 -i input.jxr Input JPEG XR file name

 -o output.bmp/tif/jxr Output image file name
 bmp: <=8bpc, BGR
 tif: >=8bpc, RGB
 jxr: for compressed domain transcode

 -c format Specifies the uncompressed output format
 0: 24bppBGR
 1: BlackWhite
 2: 8bppGray
 3: 16bppGray
 4: 16bppGrayFixedPoint
 5: 16bppGrayHalf
 7: 32bppGrayFixedPoint
 8: 32bppGrayFloat
 9: 24bppRGB
 10: 48bppRGB
 11: 48bppRGBFixedPoint
 12: 48bppRGBHalf
 14: 96bppRGBFixedPoint
 15: 128bppRGBFloat
 16: 32bppRGBE
 17: 32bppCMYK
 18: 64bppCMYK
 22: 32bppBGRA
 23: 64bppRGBA
 24: 64bppRGBAFixedPoint
 25: 64bppRGBAHalf
 27: 128bppRGBAFixedPoint
 28: 128bppRGBAFloat
 29: 16bppBGR555
 30: 16bppBGR565
 31: 32bppBGR101010
 32: 40bppCMYKA
 33: 80bppCMYKA
 34: 32bppBGR

 -r top left height width Specifies the rectangle for region decode

-T m Reduced resolution (mipmap) decode
 0: Full resolution (default)
 1: 1/2 resolution (down-sampled)
 2: 1/4 resolution (native decode)
 3: 1/8 resolution (down-sampled)
 4: 1/16 resolution (native decode)
 >4: 1/(2^m) resolution (down-sampled)

 -O orientation 0: No transformation (default)
 1: Flip vertically
 2: Flip horizontally
 3: Flip vertically & horizontally
 4: Rotate 90 degrees CW
 5: Rotate 90 degrees CW & vert flip
 6: Rotate 90 degrees CW & horz flip
 7: Rotate 90 degrees CW & horz/vert flip

 -s skip subbands Used for compressed domain transcoding
 0: All subbands included (default)
 1: Skip flexbits
 2: Skip highpass
 3: Skip highpass & lowpass (DC only)

 -a alpha decode 0: Decode without alpha channel
 1: Decode only alpha channel
 2: Decode image & alpha (default)

 -p strength Post processing filter strength
 0: None (default)
 1: Light
 2: Medium
 3: Strong
 4: Very strong

 -C Suppress overlapping macro blocks
(Used for compressed domain tile extraction)

 -t Display timing information

 -v Display verbose decoder information

Eg: jxrdecapp -i input.jxr -o output.bmp -c 0

Chapter .3 Additional Utilities

.3.1 ImageComp

This is a basic command line utility that provides measurement data comparing two uncompressed image
files. ImageComp provides a variety of image measurements, and can optionally provide a difference
image for certain foramts.

imagecomp ImageFileName1 ImageFileName2 [-i InputFormat] [-M 0/1]
 [-o diff.bmp / -O diff.raw] -k [scalefactor]

 -i InputFormat: 1 BMP (Default)
 2 TIF
 3 HDR

 -M Mode 0 Only SSE, MSE and PSNR (Default)
 1 More outputs (MaxDiff, Error Image...)

 -o filename.bmp Produces difference image in .bmp format

 -O filename.raw Produces difference image in raw BGR888 format

 -k Scale factor for difference image (default = 1)

Difference image = clip((input1 - input2) * k + 128)

 Difference image options (-o, -O) only work with BMP images

.3.2 HDR2HDR

This is a simple command line utility to convert a compressed .hdr file to an uncompressed .hdr file.
JXREncApp.exe can encode JPEG XR files in the Radiance (RGBE) format from uncompressed .hdr files.
However, Adobe Photoshop CS2 can only create compressed .hdr files.

Usage:

HDR2HDR compressed.hdr uncompressed.hdr

Chapter .4 Encoder and Decoder Internal
Interfaces and Data Structures

This section provides implementation details on tables and structures used in DPK encoder and decoder
reference source code. Some information defined here is reserved for future use.

.4.1 ImageInfo Structure

cWidth
cHeight

image size;
must be between 1-2^18;
cWidth must be even for YUV_422 and YUV_420;
cHeight must be even for YUV_420;
for BAYER, if sensor image size is w & h, then cWidth
= w / 2, cHeight = h / 2.

B

cfColorFormat color format;
Y_ONLY, YUV_420, YUV_422, YUV_444, CMYK, BAYER,
N_CHANNEL, CF_RGB, CF_RGBE, CF_PALLETIZED;
for planar alpha, use Y_ONLY;
see table 3 for valid encoder/decoder cfColorformat
combinations

O

bdBitDepth color component bit depth;
BD_1, BD_8, BD_16, BD_16S, BD_16F, BD_32, BD_32S,
BD_32F, BD_5, BD_10;
refer to the table 2 for supported cfColorFormat and
bdBitDepth combinations

B

cBitsPerUnit bits per pixel unit;
a pixel unit is color components of a pixel with
possible leading and/or tailing padding;
if not BD_1, must be multiples of 8;
for YUV_420, a ‘pixel’ means YYYYUV;
for YUV_422, a pixel means UYVY;
for BAYER, a unit is a censor unit and no padding is
allowed.

U

cLeadingPadding Number of leading padding of a pixel unit U

bRGB RGB or BGR(valid only if BD_8 and CF_RGB);
true for RGB order, false for BGR order

bpBayerPattern bayer pattern(valid only if BAYER);
0(GR/BG), 1(RG/BG), 2(BG/GR), 3(GB,RG)

B

cChromaCentering relative location of Chroma w.r.t Luma B

cChromaInterpretation colorspace B

bSkipFlexBits decode (false) or not decode(true) flex bits D

cThumbnailWidth
cThumbnailHeight

size of a thumbnail;
for s(= 2^t) : 1 thumbnail (s = 1 for full
resolution), cThumbnailWidth = (cWidth + s – 1) / s,
cThumbnailHeight = (cHeight + s – 1) / s;
codec will reset invalid thumbnail to full resolution

D

cROILeftX cROIWidth
cROITopY
cROIHeight

region to be decoded in a thumbnail; codec will trim
to fit in [0, cThumbnailWidth), [0, cThumbnailHeight)
or reset it to full thumbnail if the region is null
or completely detached from the thumbnail

D

oOrientation decoded image orientation;
 CRW FlipH FlipV
O_NONE = 0, // 0 0 0
O_FLIPV, // 0 0 1
O_FLIPH, // 0 1 0
O_FLIPVH, // 0 1 1
O_RCW, // 1 0 0
O_RCW_FLIPV, // 1 0 1
O_RCW_FLIPH, // 1 1 0
O_RCW_FLIPVH, // 1 1 1

D

cPostProcStrength strength of post processing;
0(none) 1(light) 2(medium) 3(heavy) >3(very heavy)

D

fPaddedUserBuffer boolean indicating whether the output buffer may use
optimized code path

D

B: info carried in bitstream and not decoder over writable
O: info carried in bitstream and decoder over writable
D: decoder only
U: user input, could be different for encoder and decoder

.4.2 cfColorFormat and bdDepth Combinations

Y
_O

N
LY

Y
U

V
_4

2
0

Y
U

V
_4

2
2

Y
U

V
_4

4
4

C
M

Y
K

B
A
Y
E
R

N
_C

H
A

N
N

E
L

C
F_R

G
B

C
F_R

G
B

E

C
F_PA

LLE
T
IZ

E
D

BD_1 √ × × × × × × × ×

BD_8 √ √ √ √ √ √ √ √ √

BD_16 √ √ √ √ √ √ √ √ ×

√√√×BD
_16S

√ √ √ √ √ √ ×

BD_32√
BD_16F

√ √ √ √ ×

BD_32S √ √ √ √ ×

BD_32F √ √ √ √ ×

BD_5 × × × × × × × √ ×

BD_10 × × × × × × × √ ×

√: supported ×: not supported blank: might be supported

.4.3 Encoder cfColorFormat and
Decoder cfColorFormat Combinations

decoder\encode
r

Y
_O

N
LY

Y
U

V
_4

2
0

Y
U

V
_4

2
2

Y
U

V
_4

4
4

C
M

Y
K

B
A
Y
E
R

N
_C

H
A

N
N

E
L

C
F_R

G
B

C
F_R

G
B

E

C
F_PA

LLE
T
IZ

E
D

Y_ONLY √ √ √ √ √ √ √ √

YUV_420 √ √ √

YUV_422 √ √

YUV_444 √

CMYK √

BAYER √

N_CHANNEL √

CF_RGB √ √

CF_RGBE √

CF_PALLETIZED

√: supported blank: not supported

.4.4 CodecParam Structure

uiDefaultQPIndex for macroblock quantization (DQUANT) B

cfColorFormat Internal color format;
Y_ONLY, YUV_420, YUV_422, YUV_444, CMYK,
BAYER, N_CHANNEL;
for planar alpha, use Y_ONLY;
see table 5 for valid external / internal
color format combinations

B

bdBitDepth internal bit depth;
BD_SHORT, BD_LONG;
Only support BD_LONG now.

B

olOverlap type of overlap;
OL_NONE, OL_ONE, OL_TWO

B

bfBitstreamFormat bitstream format;
SPATIAL, FREQUENCY

B

uAlphaMode alpha channel info;
encoder:,
0: RGB only
1: A only
2: Planar RGBA
3: Interleaved RGBA
this info is in the bitstream: 0(no alpha
encoded), else(interleaved alpha
encoded).
decoder:
0: don’t decode alpha or no alpha in the
bitsream
1: only decode alpha if presents: x +
alpha => alpha transcoding
2: decode alpha and other channels

O

cChannel number of color channels including alpha
if presents;
user needs to set it properly only if
N_CHANNEL;
must be 1 to 16

B

cNumOfSliceMinus1V;
uiTileX[256]
cNumOfSliceMinus1H;
uiTileY[256]

tiling info: number of
horizontal/vertical slices and
width/height;
no more than 256 slices each direction;
slice width/height must be no bigger than
65536

B

sbSubband kept subbands D

uiTrimFlexBits trimmed flexbits during encode U

nLenMantissaOrShift;
nExpBias;

32f and 32s conversion parameters B

pWStream;
cbStream;

Bitsream pointer and number of bytes in
the bitstream

U

bBlackWhite the mode user would like to encode 1bpp
black/white images.
0: 0 = black
1: 0 = white

B

bProgressiveMode turn on/off progressive mode B

fMeasurePerf turn on/off perf measurement U

bVerbose turn on/off verbose mode U

.4.5 External cfColorFormat and
Internal cfColorFormat Combinations

internal\external Y
_O

N
LY

Y
U

V
_4

2
0

Y
U

V
_4

2
2

Y
U

V
_4

4
4

C
M

Y
K

B
A
Y
E
R

N
_C

H
A

N
N

E
L

C
F_R

G
B

C
F_R

G
B

E

C
F_PA

LLE
T
IZ

E
D

Y_ONLY B I I I I I I I I

YUV_420 O B B B I B B

YUV_422 O B B I B B

YUV_444 O B I B B

CMYK O B

BAYER O B D

N_CHANNEL O B

I: input image O: output image B: both input and output blank: not supported

.4.6 ImageBufInfo Structure

pv pointer to input/output image buffer

cLine number pixel rows in buffer;
for YUV_420, a pixel row means 2 Y rows and 1 U/V row;
for YUV_422, a pixel row means 2 sensor row;
on encoder side, one MB row at a time and cLine >= 16 (8 if
YUV_420) except for the last MB row;
on decoder side, cLine >= cROIHeight (cROIWidth if
oOrientation >= O_RCW)

cbStride how many bytes each pixel row occupies in the buffer;
must be enough to contain a pixel row

An example: possible ways to encode a RGBA image (BD_8, cBitsPerPixel = 24)

cfColorFormat cLeadingPadding uAlphaMode

Encode RGBA YUV_xxx or Y_ONLY 0 2 (Planar) or
3 (Interleaved)

Encode RGB
only *

YUV_xxx or Y_ONLY 0 0

Encode Alpha
only *

Y_ONLY 3 1

Encode G channel
only *

Y_ONLY 1 1

* Not implemented.

	HD Photo
	Contents
	Preface
	About This Specification
	Formatting Conventions
	Language Notes

	Chapter .1 OVERVIEW
	.1.1 Format Identification
	.1.2 Documentation
	.1.3 Device Porting Kit Contents
	Chapter .2 Sample Applications
	.2.1 Introduction
	.2.2 JXREncApp Parameter Overview
	.2.3 Standard Uncompressed File Formats
	.2.4 Fixed Point Pixel Formats
	.2.5 Unsupported Pixel Formats
	.2.6 Compression Choices: -q, -d & -l Options
	.2.6.1 -q Image Quality (0.0 – 1.0) or Quantization (1-255)
	.2.6.2 -d Chroma Sub-sampling (0, 1, 2 or 3)
	.2.6.3 -l Overlap Processing (0, 1, 2)

	.2.7 Image Organization Choices: -f, -U, -V, -H & -a Options
	.2.7.1 -a Alpha Channel Structure
	.2.7.2 -Q Planar Alpha Quantization (1-255)
	.2.7.3 -f Frequency Order vs. Spatial Order
	.2.7.4 -p Progressive Mode

	.2.8 Image Tiling: -U, -V, -H
	.2.9 Encoder Status Reporting: -v, -t
	.2.9.1 -v Verbose mode
	.2.9.2 -t Timing information

	.2.10 JXRDecApp Command Line Decoder
	Chapter .3 Additional Utilities
	.3.1 ImageComp
	.3.2 HDR2HDR
	Chapter .4 Encoder and Decoder Internal Interfaces and Data Structures
	.4.1 ImageInfo Structure
	.4.2 cfColorFormat and bdDepth Combinations
	.4.3 Encoder cfColorFormat and Decoder cfColorFormat Combinations
	.4.4 CodecParam Structure
	.4.5 External cfColorFormat and Internal cfColorFormat Combinations
	.4.6 ImageBufInfo Structure

